CMS Compact Muon Solenoid
Super LHC: Detector and Electronics Upgrade

Total weight: 12,500 t
Overall diameter: 15 m
Overall length 21.6 m
Magnetic field 4 T
SLHC & CMS Tracker

- Brief overview of present CMS Tracker

- Requirements for SLHC
 - Try to identify most important issues

- What have we learned so far from design and development of the Microstrip Tracker?
 - pixels: still in an earlier phase

- Many questions
 - Too soon for real conclusions
Silicon Tracker

- Two main sub-systems: Microstrip Tracker and Pixel Detector
 - Microstrip Tracker comprises 3 (topological) regions

Radiation environment
~10 Mrad ionising
~10^{14} hadrons.cm$^{-2}$
Module components

- Pins
- Front-End Hybrid
- APV and control chips
- Pitch Adapter
- Kapton Bias Circuit
- Carbon Fiber/Graphite Frame
- Silicon Sensors

Kapton cable
Now incorporated with the hybrid.

RD50 workshop May 2004
Geoff Hall
Modules and sub-structures

5550 TOB modules

688 Rods

288 TEC petals
Module types

~16000 modules (including spares)
to be produced over less than 2 years.

26 different types of modules in various combinations:
• 14 types of sensor masks
• 24 types of pitch adapters
• 3 types of hybrid layouts (but assembled differently with 4 or 6 APV chips, connector orientation up or down)
• 19 types of frames (e.g. different mechanical assembly jigs)

Very complex nesting of parts.
Design considerations of present pixel system

Pixel Detector designed 6 years ago with many speculative issues and unproven technologies

Today:
Technology realistic & feasible

• 3D –tracking points

• \(\sigma(z) \sim \sigma(r\phi) \sim 15\mu m \) for precise impact parameter in \(r\phi \) & \(z \)

• replace layers after \(6 \times 10^{14}/cm^2 \) (assumed at the time for TDR)

<table>
<thead>
<tr>
<th>LAYERS:</th>
<th>(r = 4.3)cm</th>
<th>(7.2)cm</th>
<th>(11.0)cm</th>
</tr>
</thead>
</table>

\(\Rightarrow \) Area Barrel = 0.78 m\(^2\)
\(\Rightarrow \) Disk = 0.28 m\(^2\)
\(\Rightarrow \) Total ~ 1 m\(^2\)

Fluence & Rate limited \(\rightarrow r_{\text{min}} \)
Cost limited !! \(\rightarrow r_{\text{max}} \)

RD50 workshop May 2004

Geoff Hall
Present CMS Sensors

- Silicon microstrip tracker
 - ~210 m² of silicon, 10M channels
 - 75000 FE chips, 40000 optical links

- Silicon sensors - main parameters
 - Substrate: <100>, n-type float-zone, phosphorus doped
 - p-side readout, AC coupled, with poly-Si bias resistors
 - 500µm 19100 units, 8 designs 3.5-7.5kΩ.cm
 - 320µm 6450 units, 8 designs 1.5-3.0kΩ.cm
 - \(V_{\text{depletion}} < 300V \) \(V_{\text{breakdown}} > 500V \)
 - Defective strips < 1%. Rejects in modules < 2%

- Tender required companies capable to deliver >50% of requirement
CMS SLHC Tracker

- Major areas for discussion
 - Physics requirements
 - System issues
 - Electronic issues
 - Sensor issues
 - Mechanical issues - omit for time reasons

- Pixels will be more important at SLHC
 - rather key point…
 - since pixel technology is not yet proven on large scale
Tracker at $10^{35}\,cm^{-2}\cdot s^{-1}$

- Even more intense radiation environment
 - “only viable solution is to completely rebuild Inner Detector systems…”

- Working group concluded - three tracker regions
 - $R > 60\,cm$ push existing technology - ie microstrips
 - $20 < R < 60cm$ further developed hybrid pixels
 - $R < 20\,cm$ most likely new approaches required

- This probably does mean three trackers!
 - plus topographical divisions?
 - could need much larger community

- New CMS requirement - provide tracker data for L1 trigger
 - Major new challenge
Schedule for LHC Upgrades

From a talk by Jim Strait
to a DOE Meeting
18 April 2003

L at year end
Integrated L
Poisson Error
Time to Halve Error

[100 fb$^{-1}$]
[1034 cm$^{-2}$s$^{-1}$]
[Arb. units]

[years]
Physics issues

- Higher luminosity and (eventual?) higher CM energy
 - $L \rightarrow 10^{35} \text{ cm}^{-2}\text{.s}^{-1}$ $E_{CM} = 28 \text{ TeV}$
 - NB Strong correlation between L and beam lifetime

- Expect to be guided by LHC discoveries and success of machine operation
 - Electron and muon track reconstruction will still be important
 - Rarer channels to be studied?
 - More energetic jets with more particles and higher track density
 - Higher granularity will evidently help
 - but
 - No of channels, power & material budget are major concerns
What will remain the same?

- Specifications - no obvious reason for major change
 - momentum & spatial resolution
- Volume available
- Space & cooling in control room & cavern is also limited
 - increased off-detector electronics must be compensated by density
 - total power constraints will also not relax much
- Ability to cool system
 - No dramatic breakthroughs expected
- Budget?
 - Should expect it to be a constraint
What will not remain the same?

- Number of channels will increase
- Detector (sensitive) thickness and material *might* change

- Electronic technology changes are inevitable
 - and we are forced to follow them
- Off-line computing power will increase… as will…
- on-detector (ASIC) processing
 - limited by power dissipation
- off-detector (FED) processing
 - may be limited by increase in channels and complexity of data
System issues

CMS has pioneered automated module assembly
- Almost fully proven, and module assembly is now going quite fast
 - 15000 in ~2 years

But
- Significant development time to reach this point
- Many crucial, detailed, labour intensive tasks
- Some problems still occurring
- System assembly, installation and commissioning still ahead
 - Much less adaptable to automation
- SLHC tracker will be different - more modules &…
How much time is needed?

- For present system R&D started in ~1990
 - we did not understand electronic technologies as well as today
 - much time was spent on sensor development

- Where were we 5 years ago? (early 1999)
 - Sensors: MSGCs and silicon
 - Readout ASICs: 0.25µm had begun
 - Optical links: well advanced - but much done since
 - Hybrids, power, readout: barely started
 - Module assembly: automation demonstrated

- December 1999
 - MSGCs abandoned - despite much progress
 - 0.25µm CMOS adopted as baseline technology
One obvious conclusion

- 5 years is not a long time
 - Some things have taken longer than we expected, even when we thought we were finished

- We underestimate time for R&D to reach maturity
 - “90% of effort on last 10%”
 - especially affects evaluation and qualification
How to use available time?

- Possible date for upgrade 2015
 - for some assumptions see earlier slide

- Possible schedule - including contingency
 - 5-6 years R&D, depending on start, funding & people ramp
 - 2 years qualification of components in systems
 - 3 years construction

- Start date and funding are crucial assumptions!!
On-detector electronic issues

- Analogue readout was a good choice
 - but may need to reconsider digital for the future

- Optical data transmission (analogue) a big success
 - but links are the largest part of the electronics budget

- Investigating major design variants is lengthy and costly
 - often introduces new features, needing verification

- Radiation tolerance
 - Qualification is time consuming (x-ray systems & SEU)

- Automated testing
 - successful, but needs much preparatory effort & tools
Off-detector electronic issues

- Manufacture - now looks safe (but…!)
 - Large, complex boards are challenging
 - Special components (optical Rx, TTCrx,…) need care

- Processing power will increase
 - but constraints are harder to anticipate

- Components evolve fast (~5 years lifetime)
 - Functionality increases and design time
 - Technology changes - Pb free solder (2006), fpBGA assembly,…
 - Power is hard to predict reliably until design is well advanced
Relevant technology trends

- 0.25μm CMOS probably available until ~2009
 - 0.18μm and 0.13μm already available
 - essential design tools are increasingly complex
 - 300mm wafers next standard, already in use
 - implications for bump-bonding & other equipment, eg probers
- Supply voltage reduction (0.13μm 1.2V/1.5V)
 - challenge for design - dynamic range
 - trend to higher speed and lower power applications
 - not necessarily at the same time
- More digital logic possible in smaller area
 - programmable functions to tune, correct, test, debug,..
Potential benefits

- The current limiting factor for many detectors is power dissipation.

- Power (both Watts and Amperes) must be reduced using:
 - New architecture
 - New circuit design
 - New technology

Material budget in CMS tracker

All electronics related
0.13µm Good and bad news

- Radiation tolerance and noise
 - look excellent - without special design tricks
 - but care over details still required
 - SEU rate will be more of an issue

- Cost - significantly higher entry cost
 - how to plan development & NRE? - under discussion
 - but wafer costs probably scale with area, or even decrease

- Availability of engineers is a major concern
Front-end power in 0.13µm

- Simple assumptions eg. supply voltages scale, 80MHz
 - Scaled APV-type circuit (M. Raymond)
 - ENC ~ 700e for 2cm microstrip (+ leakage current)
 - power/channel : 2.3mW (0.25µm) => 0.4mW (0.13µm)

- Good news!!
 - but

- No of channels probably scales similarly…AND…

- Power in cables increases
 - $P_{\text{delivered}} = P_{\text{FE}} + I^2 R_{\text{cable}}$ and $P_{\text{FE}} = IV_s$
 - $V_s(0.13\mu m) \sim 0.5V_s(0.25\mu m)$
 - $P_{\text{cable}} = R_{\text{cable}} (P_{\text{FE}}/V_s)^2$ R_{cable} likely similar to present value
Sensor issues for SLHC

- Radiation levels
 - $x5(\text{?})$ LHC - realistic allowance for machine performance

- Performance
 - Series noise (C_{det}) may decrease but parallel (I_{leak}) may not

- Power dissipation
 - Leakage current increase could dominate module power?

- Manufacturability & R&D
 - Will unusual materials be acceptable?
 - Are they available in required quantities?
 - Any special processing requirements?
 - Close collaboration with major manufacturers from early stage
Sensor prejudices

- Sensor material
 - silicon is still most robust, well understood and reliable material
 - no breakthroughs apparently (!) imminent …??
 - R&D on new materials takes much time (+ $$$) to mature
 - therefore …

- even innermost region still likely to be silicon?

- if this is not true…
 - need **quickly** to demonstrate alternatives and R&D required
 - must be capable of reaching maturity in 5-7 years
 - large scale, commercial manufacturing is **essential**
 - evaluate funding needed to bring to maturity
Pixel situation

- use 5x TDR fluencies

- old fluence limit of $6 \times 10^{14}/\text{cm}^2$
 $\rightarrow r_{\text{min}} \sim 26\text{cm}!!$ Problem!

- What can we do?
 - Change detector more often
 - Improve fluence limit off sensor

- Need to study sensors more!
 \rightarrow RD50

RD50 workshop May 2004
Fluence Limits of Silicon Pixel Sensors

• Double sided processed, n^+ on n – silicon → expensive but high quality detectors

• So far many investigations for fluences $\sim 1 \times 10^{15} \text{ cm}^{-2}$, still quite ok!

• Reduced signal collection → partial depletion depth
 → trapping

• **Partial depletion depth** controlled by
 - High voltage capability
 - Oxygenation
 - Czochralski (lower costs)
 - Epitaxial silicon
 - Thinner detectors (e.g. 200µ → leakage current ??)
 - Reverse polarity ??

• **Trapping** so far not engineerable → final fluence limit for silicon detectors !!!

• Fluence $\sim 3 \times 10^{15} \text{ cm}^{-2}$ → $Q_{IR} = 25\% Q_{NIR}$ (very speculative !)

Is this enough signal charge for pixel ROC ?? (benefit from 0.13µ CMOS chips ?)

RD50 workshop May 2004

28 Geoff Hall
Fluence Limits

- Oxygenated CMS pixel sensors

- Double sided processed n^+ on n – silicon
 285μm thickness

- CMS Pixel test beam at CERN
 Summer 2003

- Shallow track method for depletion depth studies

- at 450V almost fully depleted

- see trapping!

$\Phi = 3 \times 10^{15}$ would imply a minimal pixel layer radius ~ 8cm!

RD50 workshop May 2004
First conclusions (R. Horisberger)

- Current pixel system could possibly be extended and rebuilt for SLHC operation in a radial region of 8 cm to 16 cm.

- e.g. 3 Layers at: 8cm 11cm 14cm
 Pixel System #1

- Silicon sensors could eventually be pushed to a fluence limit ~ $3 \times 10^{15} \text{cm}^{-2}$

- Pixel area stays 15000 μm^2 \(\rightarrow\) observe no benefit from smaller pixel

- The pixel ROC’s need some modifications to take the enormous data rate
Conclusions on pixels at intermediate radii
(R. Horisberger)

• The use of single sided processed n+ on p-silicon detectors could give a substantial reduction of the sensor costs.

• With n+ on p detectors partial depleted operation should be possible although high voltage issues at the guard ring region need R&D.

• Substantial cost reductions due to cheap module design decisions could result in module costs of 2100 SFr. With +20% add on → ~100 SFr/cm²

• At this price level it becomes conceivable to cover intermediate radii:

 e.g. 2 Layers 18cm 22cm Pixel System #2
Macro-pixels at large radii

• Need to cover the radial region 25cm to 60cm with tracking detectors that can deal with SLHC track rates

• Silicon strip detectors have sensor element area 10mm\(^2\) to 15mm\(^2\)

• For 10x luminosity increase occupancy requires a reduction of sensor element area by factor 10. \(\rightarrow\) Sensor element \(~1\)mm\(^2\) - 1.5mm\(^2\)

• Propose Macropixel detector with pixel size \(200\)um x \(5000\)um (Strixels)

• Use simple DC coupled \(p^+\) on n-silicon detector and route the strixel signals on thick polyimide (\(~40\mu\)) insulation to periphery and bumpbond to modified pixel ROC for cost efficient zero suppressed readout. \(\rightarrow\) \(~40\) SFr/cm\(^2\)

• With this price one can cover probably a 3 Layer system:

 3 Layers 30cm 40cm 50cm \textbf{Pixel System #3}
Summary (R. Horisberger)

- Propose 3 Pixel Systems that are adapted to fluence/rate and cost levels

 - **Pixel #1** max. fluence system
 ~400 SFr/cm²

 - **Pixel #2** large pixel system
 ~100 SFr/cm²

 - **Pixel #3** large area system
 Macro-pixel ~40 SFr/cm²

- 8 Layer pixel system can eventually deal with 1200 tracks per unit pseudo – rapidity

- Use cost control and cheap design considerations from very beginning.

- Can this be done for 2012/13 ????

RD50 workshop May 2004
Sensor options

- Discussed in Working Group report
- 1. Those probably meeting *large scale* maturity criterion
 - defect engineered silicon / cryogenically operated silicon
- 2. Those probably *not* meeting maturity criterion
 - 3-d detectors/ diamond
- 3. Those not mentioned
 - disposable sensors + any other ideas?
- Each solution needs customised electronics
 - Not credible to develop electronics for all options
Quasi-conventional silicon

- Defect engineered material
 - eg Oxygen doped, Magnetic Czochralski
 - no special electronic implications, if manufacturers accept processes
 - would probably apply to diamond if large scale production possible

- Cryogenically operated
 - Pros: some evidence of improved radiation resistance
 - Cons: significant implications for electronic developments
 - no proven solutions based on widespread processes (CMOS)
 - all tests must be done at operating T, equipment not readily available
 - significant performance changes expected - not just analogue
 - less predictable at present, and time-consuming to prove
Disposable sensors

- If ultra-radiation hard sensors are not available?
 - possible alternative for innermost region?
 - assumed to be based on commercial electronic technology
 - eg MAPS or a-Si+CMOS

- Production cost of disposable sensors probably feasible
 - provided NRE/development costs contained
 - savings on assembly, etc might also be significant
 - Pros: continues trend to industrial-style assembly
 - Cons: which type of sensor and how?
 - need pixel sensor but not labour-intensive
 - handling of activated material
“Straw man” module

- Adapt sensor for commercial bump bonding
 - μstrips @ 100μm
 - Bond pads 200μm pitch (staggered)
- Heat sink + substrate to deliver service signals
 - Silicon?
- SAPV: 2 per die
 - Outputs in middle
 - Power rails bump bond to substrate
 - services via substrate surface
 - service chips at periphery
- Many questions to answer
 - But might be candidate for commercial assembly on large scale?
 - Is it possible with more conventional assembly?
New challenges

- Tracker input to L1 trigger

 Muon L1 Trigger rate at
 \[L = 10^{34} \, \text{cm}^{-2} \cdot \text{s}^{-1} \]

 Note limited rejection power (slope) without tracker information

- Traditionally digitisation, rapid data transfer, off-detector processing
 - very significant changes will be required to adapt tracker readout architectures to trigger requirements
 - pixels are asynchronous, so even more difficult

(b)

\[p_T^{\mu} \text{ threshold [GeV/c]} \]
Conclusions (I)

- a replacement tracker must further develop automation
 - it will be large
 - limits on funding, manpower, time, maintenance,…
 - bottlenecks must be overcome early
 - modules must be simplified further - endcap remains most difficult
 - could task be sub-contracted?
 - disposable detectors might be necessary
 - but activation and personnel irradiation is a big issue
 - sensors must reach large scale maturity in ~5 years

- If not true, what is the alternative?
Conclusions

- Power will be a major concern
- Material budget should not increase
- Large systems are hard to build
 - Qualification must be taken seriously
- R&D duration is always underestimated
 - Reduce the number of (complex) module types
 - Increase automation of assembly
- Sensors are just one of many issues
- Electronic technology evolution will bring benefits
 - and also much difficult work