Paradoxes
of steady-state and pulse operational mode characteristics of silicon detectors
irradiated by ultra-high doses of γ-rays

E. Verbitskaya1, Z. Li2, E. Fretwurst3, V. Eremin1, I Ilyashenko1, J. Kierstead2, C. Wilburn4, R. Röder5

1Ioffe Physico-Technical Institute of Russian Academy of Sciences, Russia
2Brookhaven National Laboratory, USA
3Institute for Experimental Physics, Hamburg University, Germany
4Micron Semiconductor, UK
5CiS Institute for Microsensors, Germany

1st RD50 Workshop on radiation-hard semiconductor devices for very high luminosity colliders
CERN, 2-4 October 2002
Outline

1. Motivation and earlier results
2. Experimental
 - Steady-state characteristics
3. Dependences of V_{fd} and N_{eff} vs. dose in detectors from standard and oxygen-rich Si:
 - experimental C-V dependencies;
 - space charge sign verification using TCT
 - modeling of N_{eff} vs. D dependencies
4. Changes of I-V characteristics with dose accumulation
5. Temperature dependencies of the reverse current
 - Characteristics of pulse operational mode
6. Distortions of current pulse response shapes in detectors from standard and oxygen-rich Si irradiated by ultra-high dose of γ-rays
7. Room temperature polarization in detectors from oxygenated Si
8. Discussion
 - Conclusions

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Motivation and earlier results

High doses of γ-rays play a significant role in a linear collider

Standard Si:
gradual V_{fd} reduction till the SCSI

Si oxygen-rich (Si HTLT processed at BNL):
no SCSI up to 575 Mrad

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Experimental

BNL detectors: n-Si Wacker; $\rho = 1$ kOhm-cm; orientation $\langle 111 \rangle$;
Oxygenation: BNL High Temperature Long Time process
 + Thermal Donors: Si HTLT(TD)

CIS detectors: n-Si Wacker; $\rho = 4$ kOhm-cm; orientation $\langle 111 \rangle$ and $\langle 100 \rangle$;
Oxygenation: CIS Diffusion Oxygen Float Zone (DOFZ) process;
oxygenation time: 24, 48, 72 h

MS detectors: n-Si Wacker; $\rho = 15$ kOhm-cm; orientation $\langle 111 \rangle$;
Oxygenation: MS DOFZ process + TD

Experimental technique

1. C-V and I-V measurements;
2. TCT measurements with a red laser ($\lambda = 660$ nm);
3. I-T measurements

Irradiation: BNL, 60Co source

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Detectors irradiated up to ultra-high D

<table>
<thead>
<tr>
<th>producer</th>
<th>#</th>
<th>material</th>
<th>orientation</th>
<th>D (Mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL</td>
<td>904-96</td>
<td>standard</td>
<td></td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>904-100</td>
<td>""</td>
<td><111></td>
<td>1647</td>
</tr>
<tr>
<td></td>
<td>906-97</td>
<td>oxygenated + TDs</td>
<td><111></td>
<td>947</td>
</tr>
<tr>
<td></td>
<td>906-101</td>
<td>""</td>
<td></td>
<td>947</td>
</tr>
<tr>
<td>MS</td>
<td>1940-18-5</td>
<td>standard</td>
<td><111></td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>1940-18-6</td>
<td>""</td>
<td></td>
<td>835</td>
</tr>
<tr>
<td></td>
<td>2015-11-5</td>
<td>oxygenated + TDs</td>
<td></td>
<td>1758</td>
</tr>
<tr>
<td></td>
<td>2015-11-6</td>
<td>""</td>
<td></td>
<td>947</td>
</tr>
<tr>
<td>CIS</td>
<td>CA0749</td>
<td>standard</td>
<td><111></td>
<td>1647</td>
</tr>
<tr>
<td></td>
<td>CB0249</td>
<td>oxygenated</td>
<td><111></td>
<td>1758</td>
</tr>
<tr>
<td></td>
<td>CC1549</td>
<td>""</td>
<td></td>
<td>947</td>
</tr>
<tr>
<td></td>
<td>CD2040</td>
<td>""</td>
<td></td>
<td>1758</td>
</tr>
<tr>
<td>CIS</td>
<td>CE1549</td>
<td>standard</td>
<td><100></td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>CF0449</td>
<td>oxygenated</td>
<td><100></td>
<td>947</td>
</tr>
<tr>
<td></td>
<td>CG1049</td>
<td>""</td>
<td></td>
<td>947</td>
</tr>
<tr>
<td></td>
<td>CH2149</td>
<td>""</td>
<td></td>
<td>1758</td>
</tr>
</tbody>
</table>

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Steady-state characteristics of γ-irradiated detectors

C-V characteristics

Si standard, Ultra-high dose: $D = 0$-1.65 Grad

CIS $\langle 111 \rangle$ CA0749

Standard Si:
- V_{fd} changes non-monotonically (similar to n/p)
- “bump” in C-V characteristics may appear after V_{fd} minimum was reached

D (Mrad):
- 42.7
- 190
- 338
- 519
- 835
- 1050
- 1260
- 1647

C (pF) vs V (Volt)

$f = 10$ kHz

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
SCSI in detectors from standard Si

D = 338 Mrad BNL 904-100

SCSI is observed in all detectors from standard Si
Di is different

Laser illumination on the p+ side: electron collection

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
C-V characteristics: Si oxygenated

Ultra-high dose: \(D = 0-1.76 \text{ Grad} \) MS # 2015-11-5

- \(V_{fd} \) increases slowly and monotonically with \(D \)

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Si oxygenated: positive space charge detectors

Ultra-high dose D = 1.76 Grad CIS <111> CB0249

Space charge is positive!

V (Volt):
- 110
- 120
- 130
- 140
- 150
- 170
- 200
- 230
- 250
- 300

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Full depletion voltage in detectors from standard Si

V_{fd} as-measured:
difference in thickness
~5.5%

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Standard Si: Q-V dependencies

\[V_{\text{p-off}} = 487 \text{ V} \]

\[V_{\text{Qsat}} = 595 \text{ V} \]

- \(V_{\text{p-off}} \) – pinch-off occurs
- \(V_{\text{Qsat}} \) – \(E(x) \) is linear, Q-V dependence is close to saturation

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Results are similar to earlier data in detectors irradiated by p/n

Space charge concentration N_{eff} **in detectors from standard Si**

\[N_{\text{eff}} = N_{d0} \cdot \exp(-\gamma D) - \beta D \]

- γ - donor removal rate
- β - acceptor introduction rate

<table>
<thead>
<tr>
<th>#</th>
<th>orientation</th>
<th>N_{d0} (cm$^{-3}$)</th>
<th>γ (Mrd$^{-1}$)</th>
<th>β (cm$^{-3}$Mrd$^{-1}$)</th>
<th>D_i (Mrd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>904-100</td>
<td>$<111>$</td>
<td>$3.86 \cdot 10^{12}$</td>
<td>$2.47 \cdot 10^{-3}$</td>
<td>$4.8 \cdot 10^9$</td>
<td>325</td>
</tr>
<tr>
<td>1940-18-6</td>
<td>$<111>$</td>
<td>$7.23 \cdot 10^{11}$</td>
<td>$(7.0 \cdot 10^{-5})?$</td>
<td>$8.1 \cdot 10^9$</td>
<td>88</td>
</tr>
<tr>
<td>CA0749</td>
<td>$<111>$</td>
<td>$8.91 \cdot 10^{11}$</td>
<td>$1.88 \cdot 10^{-3}$</td>
<td>$2.7 \cdot 10^9$</td>
<td>190</td>
</tr>
<tr>
<td>CE1549</td>
<td>$<100>$</td>
<td>$9.36 \cdot 10^{11}$</td>
<td>$7.2 \cdot 10^4$</td>
<td>$4.5 \cdot 10^9$</td>
<td>190</td>
</tr>
</tbody>
</table>

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
V_{fd} and N_{eff} in detectors from standard and oxygenated Si

In contrast to standard Si in oxygenated detectors V_{fd} increases slowly and monotonically with dose.

Positive space charge is accumulated with D up to ultra-high dose of 1.75 Grad.

Donor type defect introduction in oxygenated Si is unique for γ-irradiation.

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Modeling N_{eff} vs. D dependencies in detectors from oxygenated Si

Model: $N_{d0} + N_{d1} \cdot D^m$

- donor type defect introduction
- superlinear dependence on D

The power in superlinear dependence decreases with oxygenation time?

<table>
<thead>
<tr>
<th>#</th>
<th>oxygen. time (h)</th>
<th>dose range Grad</th>
<th>N_{d0} cm$^{-3}$</th>
<th>N_{d1} cm$^{-3}$/Mrd</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-11-5 <111></td>
<td>?</td>
<td>0-1.76</td>
<td>1.625\times10^{12}</td>
<td>1.48\times10^7</td>
<td>1.449</td>
</tr>
<tr>
<td>CB0249 <111></td>
<td>24</td>
<td>0-1.76</td>
<td>1.13\times10^{12}</td>
<td>5.24\times10^4</td>
<td>2.27</td>
</tr>
<tr>
<td>CB0249 <111></td>
<td>24</td>
<td>0-1.37</td>
<td>1.09\times10^{12}</td>
<td>1.52\times10^7</td>
<td>1.47</td>
</tr>
<tr>
<td>CD2049 <111></td>
<td>72</td>
<td>0-1.76</td>
<td>1.038\times10^{12}</td>
<td>2.54\times10^8</td>
<td>1.125</td>
</tr>
<tr>
<td>CH2149 <100></td>
<td>72</td>
<td>0-1.76</td>
<td>7.89\times10^{11}</td>
<td>7.89\times10^7</td>
<td>1.266</td>
</tr>
</tbody>
</table>

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
I-V characteristics

Si standard, BNL 904-100

Si oxygenated, MS 2015-11-5

- Current values are different at the same D
- Standard Si, beyond SCSI: at $V<V_{fd}$ edge current on the n^+-side, different from stabilization of the reverse current in detectors as-irradiated by high F of neutrons/protons

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Reverse current density on dose dependencies

Comparison of standard and oxygenated Si

Standard Si:
- reverse current density at V_{fd} shows superlinear increase with dose

Oxygenated Si:
- For $D < 1$ Grad: linear increase
- Damage coefficient of 10^{-15} A/cm²·rad
- For $D > 1$ Grad: sublinear increase

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Reverse current vs. temperature dependences

![Graph showing reverse current vs. temperature](image)

Micron Semicond.
- Si stand., 1940-18-6; 835 Mrd
- Si oxyg., 2015-11-6; 947 Mrd

CIS <111>
- Si stand., CA0749; 16470 Mrd
- Si oxyg., CC1549; 957 Mrd
- Si oxyg., CB0249; 1759 Mrd

D: 0.84-1.76 Grad
T: 295 to 200 K
Bulk generation current is analyzed: $I_{at} V > V_{fd}$

Model:
Shockley-Read-Hall statistics

I-T analysis: [E. Verbitskaya et al., 5th ROSE Workshop, March 2000, CERN LEB 2000-005, p.300]

Si standard: various slope at different T
Effective generation level: $E_j = 0.64-0.68$ eV
two gen. levels: midgap level ~ 0.57 eV (lower T); and $E_j \approx 0.8$ eV

Si oxygenated: single slope, $E_j = 0.77-0.79$ eV

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Detector characteristics in pulse operational mode

<table>
<thead>
<tr>
<th>Si standard</th>
<th>BNL 904-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron collection</td>
<td></td>
</tr>
<tr>
<td>$D = 519$ Mrad</td>
<td></td>
</tr>
<tr>
<td>laser illumination of the p^+ side</td>
<td></td>
</tr>
<tr>
<td>V (Volt):</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Si oxygenated</th>
<th>CB0249</th>
</tr>
</thead>
<tbody>
<tr>
<td>hole collection</td>
<td></td>
</tr>
<tr>
<td>$D = 1.76$ Grad</td>
<td></td>
</tr>
</tbody>
</table>

DJ effect – non-uniform double peak $E(x)$ in heavily irradiated detectors originated from free carrier trapping from detector reverse current

- no initial fast rise of response
- abnormal increase of the slope
- time dependent $N_{\text{eff}} (+N_{\text{eff}} \uparrow)$
- E at the n^+ contact drops to zero

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Room temperature polarization in detectors from oxygenated Si

D = 1.76 Grad; V = 300 V (V ≈ 2 V_{fd})

hole collection: degradation of pulse response

• Initially: collection in fully depleted detector, E > 0
• Holes are trapped during drift and increase positive N_{eff}
• difference between E_{min} and E_{max} increases in time
• pulse response degradation occurs due to polarization

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Dependence of CCE degradation on reverse bias voltage

h hole collection

- CCE_h degradation is sharp
 - E (at the n⁺ contact) drops to 0,
 - neutral base region evolves at n⁺
 - holes can’t be collected
 - the higher is V, the larger is t_{top}

e electron collection

- CCE_e degradation is gradual
 - CCE ~ w/d,
 - initially: w = d,
 - at t>t_{top} gradual reduction of w

at V fixed
t_{top} is the same
for e and h

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Polarization controlled by trapping of thermally generated holes

Electron collection

- Detector is permanently biased;
- Laser is switched on and off - no difference in t_{op}, no influence from laser generated e/h

Holes are trapped from detector reverse current

Polarization: observed earlier in Si detectors irradiated by neutrons and operated at cryogenic T

Paradox for γ-irradiated detectors:

- Polarization is observed at RT;
- Hole trapping in SCR with $+N_{\text{eff}}$

Possible reason for RT polarization:

- New defects in oxygenated Si induced by γ-rays:

 $E_j = 0.8$ eV, larger τ_{detr}

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Discussion

1. *Paradoxes of γ-irradiated Si detectors*

<table>
<thead>
<tr>
<th></th>
<th>Si standard</th>
<th>Si oxygenated</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{eff}</td>
<td>$N_{\text{eff}} = N_{\text{d0}} \cdot \exp(-\gamma D) - \beta D$</td>
<td>Paradox: positive</td>
</tr>
<tr>
<td></td>
<td>negative after SCSI</td>
<td>superlinear: $N_{\text{d0}} + N_{\text{d1}} \cdot D^m$</td>
</tr>
<tr>
<td></td>
<td>linear: $\beta \sim 10^9$ cm$^{-3}$Mrd$^{-1}$</td>
<td>$m = 1.1-1.5$</td>
</tr>
<tr>
<td>$I (V_{jd})$: Paradox</td>
<td>superlinear</td>
<td>$D > 0.6$ Grd:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>linear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\beta^+ \sim 10^8$ cm$^{-3}$Mrd$^{-1}$</td>
</tr>
<tr>
<td>Pulse operation mode</td>
<td>$D > 0.5$ Grd: distortions due to DJ effect</td>
<td>Paradox:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- RT polarization at $D \geq 1$ Grd;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- hole trapping in SCR with $+N_{\text{eff}}$</td>
</tr>
</tbody>
</table>

- Defects responsible for radiation damage and different introduction rate?
- Oxy-Si: **DD or SD?** $\Delta N_{\text{eff}} = (0.8-1.1) \cdot 10^{12}$ cm$^{-3}$; $N_{\text{SD}} = 3 \cdot 10^{11}$ cm$^{-3}$ (low T data)

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Discussion 2. **Radiation hardness improvement in oxygenated Si detectors**

- V_{fd0} – full depletion voltage before irradiation;
- V_{fdF} – full depletion at the range border (D = 0.95 or 1.65 Grad);
- j_F – reverse current density at V_{fdF};
- $R = \frac{V_{fdF}}{V_{fd0}} - V_{fd}$ *increase ratio* within the dose range;
- $G_F = \frac{R_{st}}{R_{oxy}}$ - gain in the V_{fd} reduction in oxygenated detectors with respect to detectors from standard Si irradiated to the same border dose.

<table>
<thead>
<tr>
<th>#</th>
<th>range, Grad</th>
<th>G_F</th>
<th>$j_{F , st}/j_{F , oxy}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>0-0.84</td>
<td>22.5</td>
<td>4.4</td>
</tr>
<tr>
<td>CIS <111></td>
<td>0-0.95</td>
<td>2.0*</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>0-1.75</td>
<td>2.7</td>
<td>4.6</td>
</tr>
<tr>
<td>CIS <100></td>
<td>0-0.95</td>
<td>3*</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>0-1.75</td>
<td>4</td>
<td>3.3</td>
</tr>
</tbody>
</table>

* V_{fd0} is smaller for CIS <100>*

The difference in G_F and current ratio between the dose ranges arises from different dependencies of V_{fd} and j on D.

E. Verbitskaya et al, 1st RD50 Workshop, CERN, 2-4 October 2002
Conclusions

1. The **radiation hardness improvement** of detectors from oxygenated Si irradiated by γ-rays actually extends now up to ultra-high dose range of 1.75 Grad.

2. The **gain** in the V_{fd} reduction in oxygen rich detectors with respect to detectors from standard Si is ~2 in the range of 1 Grad and increases to ~3 in the ultra-high dose range 1-1.75 Grad.

3. **Paradox of oxygenated Si:**
 - inhibited degradation of steady-state characteristics even at ultra-high dose;
 - collapse at $D \sim 1$ Grad due to RT polarization in pulse operational mode!