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Instrumentation Department: studies 
of opto-electronics for applications in 

different nuclear environments
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We mainly focus on high 
gamma doses

+ neutrons
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Laser Diodes and Photo Diodes 
under radiation

• Mainly studied for space applications
Ø particle irradiation (electrons, protons, ions)
Ø kGy level gamma doses

• Observe the effects without in depth physical 
explanation
Ø Damage correlation to the displacement (NIEL)
Ø NIEL is a macro model for “bulk” structures

üModern O/E devices have complicated layered structures.
üWe are interested in MGy level ionizing doses.
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Our final objectives are to

1. define predictive radiation damage models for 2 case 
studies
1. P-i-n photodiodes – Si, InGaAs…
2. Vertical-cavity surface-emitting lasers (VCSELs) - GaAs, AlGaAs…

2. find parts of the answer to 
1. Is degradation of modern optoelectronic devices due to bulk or 

interface damage ?
2. How does downscaling of modern optoelectronics affect their 

radiation response ?

3. possibly optimize optoelectronic devices for use in nuclear 
environments
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Our approach:
from materials to devices
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Si PD can withstand MGy dose 
levels, but…

Ø dark current increase

M. Van Uffelen et al., 2004, SPIE Proceedings, vol. 5465

Ø responsivity decrease
Response Si PD 1 @ 850 nm, -5V, 60°C
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Test structures of a Si p-i-n photo 
diode

Modeling structureDevice structure

p+ Si

i Si

n+ Si

10 µm

335 µm

0.5 µm

Onoda et al., NIM B 206 (2003) 444–447
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Modeling tools for gamma 
radiation

GEANT4

Ø Electron-photon 
transport

Ø 100 eV – 1 GeV

Penelope
üDepth-distribution of 
deposited charge.
üDistribution of energy 
deposited into the target.

Ø CERN, Object-
Oriented framework

Ø Electron, photon and 
particle transport

Ø Implemented the 
Penelope low energy 
physics

üDepth-distribution of 
deposited charge.
üDistribution of energy 
deposited into the target.
üDisplacement profile
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Detailed approach for material 
performance modeling
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Total ionization dose effects are 
playing significant role in case of 

Gamma radiation

• Displacement
Ø Through Compton electrons
Ø Primary Knock-on Atoms with 

energy lower than 1 keV
Ø Only individual defects

S.Wood at al, IEEE Trans. Nucl. Sci., 1981.

Si
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Displacement of target atoms in Si upon 
electron and gamma irradiation

J. Kahn, J.Appl.Phys., 1959. 

K. Gill et al., NIM A, 1996
•vacancy introduction rate- 10-3cm-1

•divacancy introduction rate- 10-5cm-1

•type inversion after 110Mrad

L. Fedina et al., Phys.stat.sol.(a), 1999.
•clusters of vacancies in Si formed 
after MeV electron irradiation
•depends on:

Øpoint defects
Øthickness of the sample
Øsurface type

•clusters in Si are more stable 
compared to GaAs
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Total ionization dose effects are 
playing significant role in case of 

Gamma radiation

• Displacement
Ø Through Compton electrons
Ø Primary Knock-on Atoms with 

energy lower than 1 keV
Ø Only individual defects

• Heat
Ø Annealing

• Ionization
Ø Through Compton 

scattering and photo-
electric effect

S.Wood at al, IEEE Trans. Nucl. Sci., 1981.

Si
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Outcome from Penelope and its 
limitations

• Charge depth profiling-
consider only electron-

photon transport

• Limitations
Ødoes not take into account interface 
imperfections, bulk defects and impurities
Ødoes not include annealing
Ødoes not take dynamics into account (dose rate) 

Ødoes not cover displacement
Ødoes not include electric field

Øthickness dependence
Ømaterial dependence
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Penelope calculations on Si p-i-n
structures 

• Two peaks structure

• There is not interface 
influence in the 
distribution

• The intensity of back 
peak decreases

• The code is not 
suitable for nm 
structures
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Discussion

• insensitive to the doping levels

• missing any interface effects- the mean 
free path of the electrons is larger than 
the thickness of the device

• radiation induced carriers will affect 
lightly doped regions and those closer to 
the surface
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Limits of the calculations

Øtemperature effects
Ø impurities and contaminations
Ø interface stresses
Ødose rate effects and accumulation

phenomenology, MD ….

Øelectron particle transport
Øelectric field effects

GEANT4
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First CV trials of Si p-i-n PD

• change in the 
material properties

• accumulation of 
charge in the oxide 
layer?

• intrinsic layer?
• package effects?
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Summary

• Penelope calculates almost homogeneous 
distribution up to 500µm thickness of the 
structure
Ø “bulk” effects are dominant

• the thinner the device the smaller the 
amount of radiation induced charges and 
the smaller the amount of displaced atoms

• lightly doped regions are more affected



page 22

Future work

• investigate electric field effects and 
displacement with Geant4

• additional  CV measurements and 
interpretation

• looking for other suitable techniques to 
characterize devices


