TCT Studies in

FZ, DOFZ and MCz Silicon

5th RD50 Workshop, 14th-16th October 2004 Florence, Italy

Alison Bates*, Michael Moll* and Katharina Kaska** * CERN, PH-TA1/SD Division ** University of Technology, Vienna

Overview

- Transient Current Technique review
- The new CERN TCT set-up
- Material characterisation
 - IV/CV
 - TCT
 - \Box QV => V_{fd}
 - Trapping time determination
 - $\square \beta$ value determination
 - □ Type inversion in DOFZ
 - □ SCSI in MCz?

Cu/Be spring contact to front pad

CERN TCT set-up(1)

- Easy detector mounting
 Floating guard ring
- Front and back illumination possible
- Peltier cooled to ~-10°C
 Temp. stability to <u>+</u>0.1°C
- \Box Flushed with N₂ gas
- □ Red 660 nm laser diode
- □ IR 1060 nm laser diode
- Amount of charge deposited can be tuned - laser diode output controlled by pulse generator signal

Au PCB for ground plate Laser fibre for illuminating the top of the detector

Water cooling and gas system

CERN TCT set-up(2)

Materials studied

- Okmetric Oyj silicon processed at the Helsinki Institute of Physics*
 - FZ (f2)
 - DOFZ (d1)
 - MCz (n320)
- **Δ** 15 kΩcm DOFZ (W317) silicon diodes
- All irradiations were performed at the CERN PS using 24 GeV/c protons**
- *Many thanks (yet again!) to Jaakko Haerkonen and the Helsinki Institute of Physics
- ** Maurice, Michael and Federico have now irradiated hundreds of detectors for these studies alone. They provide a truly unique service and are usually taken for granted!

Normalised Leakage Current

- □ Annealed for 4 mins/80°C
- Normalise the leakage current to volume
- Using annealing parameterisation:
- $\alpha(t) = \alpha_1 e^{(-t/\tau_1)} + \alpha_0 \beta \ln(t/t_0) = > \alpha(4mins/80^{\circ}C) = 4.56 \times 10^{-17} \text{ A/cm}$

QV compared with IV/CV

Effective trapping time – Charge Correction Method (CCM)

 $1/\tau_{effe,h} = \beta_{e,h} \Phi_{eq}$

Example plots from FZ (f2);

β parameter summary

results!

New

	β _e [10 ⁻¹⁶ cm²/ns]	β _h [10 ⁻¹⁶ cm²/ns]	т [∘С]
Dortmund	5.16 <u>+</u> 0.16	5.04 <u>+</u> 0.16	0
Ljubljana	5.6 <u>+</u> 0.2	7.7 <u>+</u> 0.2	-10
Hamburg	4.85 <u>+</u> 0.15	5.72 <u>+</u> 0.5	+20
f2 (FZ)	5.59 <u>+</u> 0.29	7.16 <u>+</u> 0.32	+5
d1 (DOFZ)	5.73 <u>+</u> 0.29	6.88 <u>+</u> 0.34	+5
n320 (MCz)	5.81 <u>+</u> 0.32	7.78 <u>+</u> 0.39	+5
W317 (DOFZ)	5.48 <u>+</u> 0.22	6.02 <u>+</u> 0.29	+5

A G Bates - CERN TCT Studies

13

A G Bates - CERN TCT Studies

Summary

- 4 materials studied in detail using IV/CV and TCT
 - Leakage current behaviour
 - IV/CV evolution of V_{fd} with Φ
 - V_{fd} from QV method
 - β value comparison with Dortmund, Hamburg and Ljubljana – agreement with Ljubljana
 - Examples of SCSI in DOFZ (also seen in FZ)
 - Showed no SCSI in MCz
- Other studies (not shown):
 - CCE of MCz, FZ and DOFZ silicon
 - Temperature effects on trapping times
 - Annealing study for DOFZ and MCz silicon

(All of the above will be summarised in an RD50 paper)

Signal treatment

Deconvolution of the true signal from the measured signal

Measured signal = detector signal \otimes transfer function

Back up slide 2 – signal examples

A G Bates - CERN TCT Studies

MCz $\beta_{e,h}$ fits

Electron injection in MCz at 1.7x10¹³ p/cm²

