Charge Collection efficiency measurements on thinned FZ Si diodes irradiated with Li ions

M. Bruzzi, E.Focardi, C.Tosi, A.Candelori, V.Khomenkhov, C.Piemonte, M.Boscardin, N.Zorzi, S.Ronchin

INFN & University of Florence INFN & University of Padova ITC-IRST, Trento Pad

SMART on FZ thinned devices (W=50-100 µm)

SEM: back view of a thinned device Areas: 1 mm² - 20 mm² and I<1 nA/cm² at 20 V

1. Tetra Methyl Ammonium Hydroxide (TMAH) etching from back.

- 2. Phosphorous deposition and diffusion from back.
- 3. Metal deposition from back.

charge collection efficiency studies							
detector	thickness(m m)	Surface (mm ²)	devices				
D50-1	50	3.5	1				
D100-1	100	3.5	1				
D300-1	300	3.5	2				
D50-2	50	1.9	3				
D100-2	100	1.9	3				
D300-2	300	1.9	4				

First run

- FZ Si n-type, $\rho > 6k\Omega cm$
- Single Pad Diodes

Second run on radiation hard materials planned in 2005

Irradiation performed on thin detectors

- 1. 58MeV Li ions in Padova, Legnaro, up to 64x10¹² Li/cm² (INFN Padova) equivalent to 5.4x10¹⁵cm⁻² 24GeV/c protons.
- 2. SPS CERN with 24GeV/c p up to 10¹⁶cm⁻² on thinned detectors and epitaxial n-type 50mm, 50Wcm from ITME, processed by IRST-Trento. Detectors already irradiated, will be measured by the end of the year.

Thin diodes studied in this work

 10^{13} Li/cm^2 $\rightarrow 4.5 \text{ x}10^{14} 1 \text{MeV n/cm}^2$ Padova Legnaro $1.8 \text{x}10^{13} \text{ Li/cm}^2$ $\rightarrow 8.1 \text{x}10^{14} 1 \text{MeV n/cm}^2$

Irradiated devices							
detector	thickness(m n)	surface(mm ²)	devices				
D50-2	50	1.9	1				
D100-2	100	1.9	1				
D300-2	300	1.9	2				

Annealing at $80 \,^{\circ}C$ for 4 minutes Stored at $-10 \,^{\circ}C$

*Hardness factor Li⁺ vs. neutron: 45.08

Scaling of leakage current after irradiation for different thickness Radiation hardness factor scales with dE/dx

Microscopic Analysis on thick Si irradiated with Li ions confirm this

M. Scaringella et al., NSS 2004, Rome

Non uniform damage along the thickness due to different dE/dx @ V₂ related defects concentration increases along thickness

CV measured after irradiation + 4min at 80°C F = 10kHz T = ..°C

Charge Collection Efficiency measurements

Charge Collection Efficiency before irradiation on 50-300mm diodes

Non irradiated	thickness (m m)	V _{CV} (V)	V _{CCE} (V)	$N_{eff} (10^{11} cm^{-3})$	Collected charge [e]	I _{sat.} (A/m ³)
D50-a	45±2	1.25 ± 0.3	0.7 ± 0.1	9 ± 3	2680 ± 140	0.5 ± 0.1
D100-a	96 ± 2	1.8 ± 0.2	1.4 ± 0.5	3.5 ± 0.5	6300 ± 150	$0.4 {\pm} 0.1$
D300-a	295 ± 3	17 ± 1	13.5 ± 0.5	2.5 ± 0.5	21350±150	$0.4 {\pm} 0.1$
D50-b	46 ± 2	1.3 ± 0.2	0.8 ± 0.1	9 ± 3	2760±150	0.3 ± 0.1
D100-b	96 ± 2	1.4 ± 0.2	1.4 ± 0.5	2.5 ± 0.5	6280±150	0.3±0.1
D300-b	297 ± 3	16.5 ± 1	14 ± 1	2.5 ± 0.5	21500±150	0.4 ± 0.1

After the maximum fluence of irradiation now studied (8x10¹⁴ 1MeV cm⁻²) 100% CCE @ -20°C

<u>Need to overdeplete the detector</u>: $V_{CCE} >> V_{CV}$ After max fluence: $V_{CCE} = 75V$ (50mm); $V_{CCE} = 230-300V$ (100mm)

Comparison with epitaxial diodes in progress

Conclusions

Si thin detectors have been tested before and after irradiation with 58MeV Li ions up to the fluence of 1.8×10^{13} cm⁻³, corresponding to 8×10^{14} cm⁻² 1MeV neutrons.

Full cce has been measured with β -source and low noise electronics at -20° C with 100 μ m and 50 μ m thick detectors.

Reverse voltage needed to maximize the collected charge is much higher than the full depletion voltage measured with C-V. More studies are in progress to explain this behaviour.

Measurement will be extended by the end of the year on thin detectors irradiated up to $10^{16} 24 \text{GeV p} / \text{cm}^2$ at CERN.

Comparison will be carried out with epitaxial detectors produced on $50\mu m$, $50\Omega cm$ detectors produced on ITME materials by IRST-Trento.