

Analysis and Simulation of Charge Collection Efficiency in Si Thin Detectors

M. Petasecca^{1,3}, F.Moscatelli^{1,2,3}, G.U. Pignatel^{1,3}

¹ DIEI - Università di Perugia, via G.Duranti,93 - Italy
 ²IMM-CNR sez.di Bologna, via Gobetti 101 – Italy
 ³INFN sez. Perugia – via Pascoli, 10 - Italy

Outline

- Radiation damage modelling
- Simulation of Silicon Thin structures:
 - Depletion Voltage as a function of Fluence
 - Charge Collection Efficiency as a function of thickness and Fluence

Simulation Tool

• Simulation tool:

–ISE-TCAD ver. 6.1 – discrete time and spatial solutions to equations

- Damage modelling:
 - Deep levels: E_t , σ_n and σ_p
 - SRH statistics
 - Effects: high density defect concentration (clusters) produces an increase of the leakage current – variation of doping concentration and CCE

Three-level model

Level characteristics*:

Perugia

INFN

	Acceptor	Acceptor	Donor
E	$E_c - 0.42 eV$	$E_c - 0.50 eV$	E_v +0.36eV
σ_{p}	$8 \cdot 10^{-15} \text{cm}^2$	10^{-15} cm^2	$10^{-16} \mathrm{cm}^2$
σ_{n}	$10^{-16}{ m cm}^2$	$10^{-16} \mathrm{cm}^2$	10^{-15} cm^2
η	26 cm ⁻¹	0.1 cm ⁻¹	1 cm ⁻¹

Thin detectors

• Thin detectors have been proposed to investigate the possibility to get a **low depletion voltage** and to **limit the leakage current** of heavily irradiated silicon devices

Simulation setup

Simulated device structure and parameters:

-Doping profiles:

•n-doped substrate $(7 \times 10^{11} \text{ cm}^{-3}) \rightarrow$ **6kOcm**.

•Charge concentration at the silicon-oxide interface of :

 -4×10^{11} cm⁻³ pre-irradiation

 -1×10^{12} cm⁻³ post-irradiation

–Optimized variable mesh definition– Different thickness devices:

D = 20-50-100-200-300 μm

Simulation results

Simulated Depletion Voltage as a function of the fluence

- V_{dep} in thin structures is one order of magnitude lower than in thick one - V_{dep} of thin diode at a fluence of 1×10^{15} n/cm² is about 120 V while in thick diode is more than 3000 V !

CCE Simulation results

Marco Petasecca – DIEI – University of Perugia

Simulated Collected Charge as a function of the applied Bias at 2×10^{14} n/cm² and Experimental data

Simulated data at fluence of 10¹⁴ reproduce experimental results [1]

[1] M.Bruzzi et al./ Nucl.Phys.61B(98)

Marco Petasecca – DIEI – University of Perugia

Simulated Collected Charge as a function of the applied Bias at 10¹⁵ and 10¹⁶ n/cm² Fluence

- Simulated data at fluence of 10¹⁵ well reproduce experimental data [1,2] as confirmed also by results at RESMDD (66% @ 190V for 50µm thick p-on-n diode)
- 2. The simulation of a thinner structure (50 and $100\mu m$) at higher fluence shows a saturation of the number of e-h pairs collected at the diode's electrode.

[2] L.Beattie et al./ NIM 412A (98)

Marco Petasecca – DIEI – University of Perugia

Simulated Charge Collection Efficiency as a function of the Fluence for thick diodes

- Simulated CCE as a function of Fluence (2e14 1e15 1e16 n/cm²) shows a no-linear slope
- The inefficiency rapidly decreasing would be caused by the high concentration of defects and by the partial depletion of the devices [Borchi TNS vol.45 no.2 (98)]
 Marco Petasecca DIEI University of Perugia

Conclusions

- Irradiated thin and thick diodes have been analyzed considering a three levels simulation model up to $F\!=\!1e16~n/cm^2$
- Thin features:
 - As known, V_{dep} in thin structures is one order of magnitude lower than thick diodes
 - The results suggest that an optimum thickness exists (50-100 um) which can maximize detector radiation hardness and signal-to-noise ratio.
- Next steps are:
 - Development of a new model for the p-type substrate based on the DLTS test which will be performed at the end of 2004 in Florence.

