

T. Rohe et al. 5th RD50 Workshop Oct. 14-16, 2004 Firenze

Pixel Devices on the common RD50 Strip Detector Mask Set

T. Rohe, PSI

5th RD50 workshop, October 14-16, 2004, Firenze

Basic Considerations

- "n-in-p" pixel sensors very attractive for sLHC
 - Single sided process (much cheaper than "n-in-n")
 - Potentially the same radiation hardness
- Mask set dedicated to "n-in-p" strip detectors
 - Process contains a poly layer
 - Contacts only possible via poly
 - No passivation
 - Process is double sided
- Pixel devices are "parasitic"
 - Cover only a small fraction of the wafer
 - Have to use the technology chosen for the strips

Implications on Pixels

- Design is derived from CMS barrel-pixel sensors but
 - Minimum feature size is larger
 - Bias structure different
 - Guard ring design different
 - Technology is slightly different
- Probably no Bump deposition on wafer level
 - Limits possible bump vendors
 - Expensive
 - Small number of devices (therefore no Problem)
- Poly cannot be avoided (contacts)
 - Is used as field plate (in the pixels and guard rings)
- Backside is unstructured
 - "n-in-p" technology should be single sided
 - No laser tests possible (probably a mistake ?)

Geometry

- Pixel size : 100×150µm² (CMS)
- Array size: 22×40
 - Fits to a special ROC currently under design at PSI
- Sensitive area: 3.6×4.1 mm²
- Chip size: 5.4×6.2mm²
- 4 sensors next to each other, recticle size: 10.8×12.4mm² (Fits into 12.5×12.5mm²)

Device Corner

- Multi guard structure
 - 10 rings
 - Increasing gap
 - Overlaps in metal and poly Elongated edge pixel (for
- Elongated edge pixel (for multichip modules)
- Distance sensitive area to scribe ~0.9mm

Pixel Design 1

- As close to the ATLAS/CMS-barrel design as possible – Gaps larger
- Bias dot
 - Testability
 - Small area affected
- Poly used as field plate

Pixel Design 2

- As simple as possible
- Avoid features which might reduce the yield
 - Small distance "inner" bias dot
 - Crossing of metal and poly
- Signal loss due to bias structure more severe ?

- "n-in-p" pixel sensors submitted with strips
- Design close to such used in LHC experiments
- Poly of "strip" technology allowed/required the implementation of field plates
 - Potentially higher breakdown voltage
 - Not standard for DC-coupled pixel
 - 2 extra mask layers (costs)
- Sensors fit the analogue pixel readout chip currently under development at PSI

T. Rohe et al. 5th RD50 Workshop Oct. 14-16, 2004 Firenze

A Pixel Readout Chip for Sensor Characterisation

R. Horisberger and T. Rohe PSI

Motivation Preliminary Specifications Schedule

Motivation

- Sensor R&D for the CMS Pixel Barrel was done with a Honeywell-Version of PSI30 produced in 1997
 - Important features:
 - Full analogue readout without zero suppression possible
 - Easy to operate
 - But:
 - Not available anymore
 - Not sufficiently radiation hard (very painful bump bonding procedure of irradiated sensors)
- Successor Chip needed

Boundary Conditions

- Has to be simple
 - Only 1-2 persons available
 - Not a "top priority project" for those
 - Readout system should be simple and inexpensive
- Close to CMS (otherwise it will be hard to allocate the personal resources and money)
 - Pitch of CMS pixels is (100×150 μ m²) used
 - Analogue part of the CMS ROC is taken with minor modifications only (5 metal layers reduced to 3)

Basic Functionality

- No zero suppression:
 - No comparator
 - No trimming
 - No programming
- If external trigger (e.g. from back side signal) comes within 50-60ns to en_hold, analogue amplitude is stored on capacitor
- For readout
 - Token is clocked through a static shift register running along all cells.
 - Signal is available on aout_hld when token is in the cell

Paul Scherrer Institut

Additional Featues

- Token shift register vrgsh tok out !en hold icmpleak can be used for shift reg. - Inject calibration pulses Vcal into ileak out vcal phi1 phi2 aout dir aout hld tok in a capacitor (~8 fF)
 - Connect the shaper output to an external pin
 - Connect pixel leakage current to an external pin
- No of pins: 18
- Supply voltage: 2.5V (D) and ~1.2V (A)

- Pixel Size: 100×150μm²
- Array 40×22
- Chip: 6 × ~3.5 mm²
- No of pins: 18, pitch $180\mu m$
- Supply voltage: 2.5V (D) and ~1.2V, <10mA (A)

Paul	Scherrer	Institut

Status

- Circuit/Schematic: ready
- Layout: In progress
- Expected submission: MPW via CERN in Dec 04 ???? (has been delayed already several times ...)
- Quantities: MPW = few chips, diced
- If chip good, interest and founding ok, purchase un-diced MPWs? (Engineering run too expensive > 100kCHF)