

Moisture sensitivity of AC coupled silicon sensors

5th RD50 - Workshop on Radiation hard semiconductor devices for vey high luminosity colliders Florence, October 14 – 16, 2004

Fred Hartjes (NIKHEF)

on behalf of the ATLAS SCT collaboration

Introduction

AC coupled silicon strip sensors used for the ATLAS SCT

- 86% made by Hamamatsu, including all the barrel region
 - These perform very well, without problem
- 14% made by CiS
 - These show some moisture sensitivity
 - Implying more difficulty in commissioning parts of the endcap SCT, but OK for operation in ATLAS
- According to common specification given by SCT community (p-on-n technology), with design details optimised by each manufacturer

Hamamatsu

- SiO₂ passivation
- metal strips are <u>broader</u> than implants (Field plate geometry)
- CiS
 - SiON passivation
 - metal strips are <u>narrower</u> than implants (Non-field plate geometry)
 - Bulk oxidized (SCT inner endcap modules only) to improve radiation tolerance

Radiation tolerance

• Radiation load in the CERN LHC for the scheduled 10 y of operation

- Neutrons: $\leq 2 \times 10^{14}$ /cm²
- Protons: $\leq 3 \times 10^{14}$ /cm²
- After moderate irradiation $n \rightarrow p$ type inversion
 - p/n junction moves from strip side to backside
- Required bias voltage to get full depletion including safety margin
 - Initially only 150 V
 - Decreasing to a low value at type inversion
 - From type inversion on increasing until 450 V
- Both fabricates (Hamamatsu and CiS) have shown in extensive irradiation studies to give satisfactory performance

Breakdown problems for CiS non-field plate sensors

- For the majority of the unirradiated **non-field plate** CiS sensors a strange IV behaviour was observed during module production
 - Problems ranging from a bit unpractical in use until bad
 - Problems almost **not** observed for the **field plate** sensors from Hamamatsu (<1%)
- Nature of the problems with CiS sensors
 - Early IV breakdown
 - Awkward and irreproducible IV curves
 - IV results did not correspond to measurements by manufacturer
- Continued studies show clear moisture dependence of CiS IV behaviour
 - wet (45 50% RH) gives good IV curve
 - dry (< 10% RH) may give breakdown
 - transition region $(30 40 \% \text{ RH}) \Rightarrow$ strange results
- Breakdown only occurs at strip side
 - => no breakdown problem after type inversion
 - Confirmed by irradiation tests by MPI (Ladislav Andricek, MPI Halbleiterlabor, Munich)
 - => breakdown is no problem for operation in ATLAS
- Simple qualitative explanation of the phenomenon will be given
 - Based on ideas from Rainer Richter (MPI-Munich)

Properties investigated CiS silicon sensor

- Geometry: **non-field plate**
- Sensor type: W12 (inner endcap modules)
- Technology: p-on-n
- Additional oxygen dope: 10¹⁷/cm³
- Orientation <111>
- Wedge shape 55.5 x 61 mm²
- 768 AC coupled strips
- Average pitch 70.5 μm
- Tested until $V_{bias} = 450 V$

Two different sensor geometries in use at the SCT inner modules

Two examples of moisture dependence for **CiS non-field plate geometry**

- In dry atmosphere (< 6% RH) breakdown
- In wet condition (RH = 45 50%) no problem
- I_{bias} lower in dry atmosphere before breakdown
- Effect of lower I_{bias} in dry atmosphere also observed for Hamamatsu sensors with the field plate geometry but here < 1% breakdown
 - A.Chilingarov, Lancaster University, talk on Vertex 2004, Menaggio, on 17 September 2004

400

500

Measurement in the transition region for CiS W12 sensors

- Measured at 39% RH => transition region dry/wet behaviour
- Breakdown sets in but disappears during measurement

Other examples of IV behaviour of CiS non-field plate geometry in dry atmosphere

Test box used for IV studies

- Small volume probe box
- Rapid moisture sensor
 - type SHT15 with τ = few s from Sensirion
- IV measurement with Keithley 2410
 - Steps of 10 V, ramping at 10V/s
 - 10 s waiting time prior to measurement

- Simple moisture control by water bubbler
- => rapid switching of moisture level possible (< 1 min)

Study on the moisture dependence of the CiS non-field plate silicon sensors

What do we see if we change from <u>dry to wet</u> while V_{bias} is on?

- And when going back again?
 - Non breakdown situation
 - Breakdown situation

• Can we train a module by ramping V_{bias} up in wet and subsequently switch to dry?

Has an IV discharge impact on the sensor signal?

Switching dry to wet level when V_{bias} is on

Non-breakdown situation

Switching dry to wet level when V_{bias} is on

Breakdown situation

I_{bias} initially in a discharge

Training by switching from wet to dry while \mathbf{V}_{bias} is on

No breakdown if moisture level is switched at $V_{\text{bias}} = 150$ V instead of $V_{\text{bias}} = 0$

=> sensor is well capable of operating in a dry atmosphere if properly trained

What happens if we train at a lower voltage than 150 V?

For this sensor breakdown can be avoided if we keep it at 40 V background voltage

Fred Hartjes

Impact of breakdown current on signal properties

I_{bias} during characterisation of module N027

30

t (min)

characterisatior

 \sim

50

40

3

2

1 -

l_{bias} (uA)

 $=> I_{bias} \ll 0.5 \ \mu A$

60

Noise spectrum at 1st characterisation with a module using CiS sensors

• Discharge currents are not stable (stochastic process)

=>Number of huge noise spikes are visible indicating the breakdown spots

• Discharge currents are not evenly distributed across the surface but occur at a small number of critical points

Noise spectrum at 1st characterisation

Detail noise plot N027

• Most spikes gone at 2nd characterisation

Schematic potential distribution at CiS non-field plate surface

- Dry => non conductive surface assumed
- Positive potential is induced by backplane across the interstrip surface
- High field occurs near edge of implant => breakdown

Avoiding breakdown with field plate geometry of Hamamatsu

- Non conductive surface (dry)
- Metal strip capacitively coupled to implant
 - Implant shielded by metal => field near edge of implant reduced
 - No breakdown

Effect of wire bonding for non-field plate sensors

NIKHEF module N063

Measured in dry condition

not sufficiently

breakdown voltages

- Breakdown dependence on wire bonding
- 1x10⁻⁶ bonded unbonded Wire bonding generally improves breakdown behaviour but often 800x10-9 600x10-9 Improvement is minor for low I_{bias} (A) breakdown voltages (< 100 V) but substantial for higher (>150 V) 400x10⁻⁹ 200x10⁻⁹ Explanation: metal strips are no longer floating when bonded n 100 200 0 300 400 500 $V_{bias}(V)$

Moisture film on insulator surface

• Moisture films of atomic thickness are formed on all insulators starting

- Well known behaviour for insulators
- Continuous decrease of surface conductivity for decreasing relative humidity [†]
- Moisture effect on surface conductivity material dependent (hygroscopic materials)
 => There may be a difference between the SiO₂ passivation (used for field plate sensors) and the SiON passivation (used for non-field plate sensors)

• My own observation: dry air removes moisture film within seconds

[†] A.Chilingarov, talk on Vertex 2004, Menaggio, on 17 September 2004.

Partially depleted situation in <u>dry</u> atmosphere

- Assumed depleted area for **non-field plate** geometry
- Surface not conductive => positively charged by induction
 - Positive space charge in SiO₂ layer neglected
 - Undepleted zone between strips
 - High interstrip capacitance (A.Chilingarov, talk on Vertex 2004, Menaggio, on 17 September 2004)
 - Lower bias current
 - For non-field plate geometry high field at edge of implant => Breakdown

Partially depleted in moist atmosphere

- Assumed depleted area for non-field geometry
- Surface conductive => no external charge
 - Fully depleted zone between strips => low interstrip capacitance
 - Higher bias field => higher bias current
 - Reduced field at edge of implant => No breakdown
- When switching from wet to dry then the negative charge on the insulated surface is preserved
 - => we do get the same charge distribution back if we test V_{bias} on a later moment as long as the sensor is <u>permanently</u> kept in a dry atmosphere

Summary and conclusions

- Sensors with early breakdown can be trained by applying bias voltage in a moist atmosphere followed by switching to dry *while* V_{bias} is on
- Breakdown currents show themselves as a small number of high spikes in the noise spectrum

=> discharges probably confined to small spots

- The lower bias current in a dry atmosphere compared to moist for both detector geometries can be explained from reduced field strength in the dry atmosphere
- Observed breakdown phenomena in CiS sensors are unpractical in during commissioning of the ATLAS SCT endcaps but do **not** affect operation in the ATLAS SCT