The X defect in Epi/Cz silicon diodes after high doses of Co^{60} - γ irradiation

I. Pintilie*, G. Lindstroem**, E. Fretwurst** and J. Stahl**

* National Institute of Materials Physics, Bucharest, Romania ** Institute of Experimental Physics-University of Hamburg, Hamburg, Germany

Material

EPI-Silicon wafers: <111>, n/P, 50 Ocm, 50 μm on 300 μm Cz-substrate, CiS process

Irradiation source: Brookhaven National Laboratory for ⁶⁰Co-γ-photons

Oxygen depth profile of EPI with SIMS (ITME+SIMS lab. Warsaw)

Short history of the X defect

• *low irradiation doses* (4 Mrad) – the X defect is formed in oxygen enriched material via the annealing of divacancy for T> 250° C

X defect – two acceptor states Proposed formation mechanism¹: $V_2 + O_i \mathbf{P} V_2 O_i$

¹⁾ Monakov et al, Phys Rev B, Volume 65, 233207 (2002)

*Epi/Cz – 105 Mrad***

The X-level is also generated in STFZ material, *but* after annealing out of V_2

At 320°C the X-level appears, *but* in larger concentration than V_2 !

Þ For the high dose the annealing relation between the X-level and the divacancy is not given any more !!

*I. Pintilie, E. Fretwurst, G. Kramberger, G. Lindstroem, Z. Li and J. Stahl, *Physica B: Condensed Matter*, 340-342, 578, (2003) **J.Stahl, *Reaction kinetics in different silicon materials*, 3rd RD50 workshop, CERN- Geneve

X center in Epi/Cz after 520 Mrad dose

X center in Epi/Cz after 520 Mrad dose

Annealing at 320 °C

Annealing of VO center

Initial [VO]~4.4x10¹⁴cm⁻³

Introduction rate of X defect

Most likely – the X center is formed via a second order process !

X defect - Formation mechanism

Can be V_2O ?

for low irradiation doses when $[X] \leq [VV]$

[O_i]~1x10¹⁵cm⁻³

The impurity which forms the X center via VV migration should be in a much smaller concentration than that of oxygen interstitial

Can be V_2O_2 ?

From theoretical calculations V_2O_2 has basically the same properties as $V_2O^{(1)}$

Reaction
$$V_2O_2$$

 $V_2 + O_2 => V_2 O_2$

Probable, because $[O_2]_{EPI}$ and $[O_2]_{DOFZ} >> [O_2]_{STFZ}$

$$VO+VO = V_2O_2$$

Probable, because from exp. data the additional formation of X is related to annealing of VO

$$[O_{2i}] \sim 1 \times 10^{15} \text{ cm}^{-3}$$

2) DVV(y) :=
$$1 \cdot 10^{-5} \cdot \exp\left(\frac{-1.3 \cdot q}{k \cdot y}\right)$$

$$DVQ(y) := 6 \cdot 10^{-4} \cdot exp\left(\frac{-1.8 \cdot q}{k \cdot y}\right)$$

During irradiation: $V+O_{2i} => VO_2$ and $V+VO_2 => V_2O_2$

¹⁾ J. Coutinho et al, "The formation dissociation and electrical activity of divacancy oxygen complexes in Si", PHYSICA B, in press
²⁾ B. G. Svensson et al, PRB 34 (12) 1986

$$\mathbf{DVV}(\mathbf{y}) := 1 \cdot 10^{-5} \cdot \exp\left(\frac{-1.3 \cdot \mathbf{q}}{\mathbf{k} \cdot \mathbf{y}}\right)$$

$$DVO(y) := 6 \cdot 10^{-4} \cdot exp\left(\frac{-1.8 \cdot q}{k \cdot y}\right)$$

Low doses 25 Mrad

High doses 520 Mrad

Conclusions

X defect

- induced by irradiation in Epi material for doses \geq 100 Mrad
- generated via a second order process
- has a donor state at $\Delta H \sim E_V + 0.22$ eV and a capture cross section of $\sigma_p \sim 7x10^{-16} cm^2$
- in the light of the experiments, its dentification with V_2O is doubtfull
- a better candidate to be associated with, is the V_2O_2 complex