5th RD50 - Workshop on

Radiation hard semiconductor devices for very high luminosity colliders

Florence, 14-16 October, 2004

Studies of defect centres in high-energy proton irradiated epitaxial silicon using HRPITS technique

R. Kozłowski^a, P. Kamiński^a, E. Nossarzewska-Orłowska^a, E. Fretwurst^b, G. Lindstroem^b, and M. Pawłowski^{a,c}

 ^a Institute of Electronic Materials Technology, Wolczynska 133 Str., 01-919 Warsaw, Poland
^b Institute for Experimental Physics, University of Hamburg, Luruper Chaussee 149, DESY Bldg. 67b, D-22761 Hamburg, Germany
^c Military University of Technology, Kaliskiego 2 Str., 00-908 Warsaw 49, PO Box 50, Poland

Plan of talk:

- Background and motivation
- Experimental details
- Results of HRPITS measurements
- Conclusions

Background

Epitaxial vs FZ thinned

(E. Fretwurst et al., 4th RD50 Workshop, http://rd50.web.cern.ch/rd50/4th-workshop)

- The depletion voltage of epitaxial detectors slightly decreases with increasing fluence from 1x10¹⁴ to 1x10¹⁵ cm⁻². This behaviour is opposite to that of thin detectors made from FZ Si
- For the fluences ranging from 2x10¹⁵ to 8x10¹⁵ cm⁻² the depletion voltage rises with increasing fluence for the both types of detectors.

Epitaxial detector

- For the short-term annealing the depletion voltage slightly increases with increasing the annealing time.
- For the long-term annealing the depletion voltage significantly decreases.

FZ thinned detector

- The short-term annealing results in a diminution of the depletion voltage.
- Long-term annealing causes its substantial increase.

Experimental details

50 µm epitaxial layer on CZ-Si substrate

ITME: fabrication of epitaxial layer CiS: device processing

Schematic of the sample structure

1. Starting material: low resistivity (ρ <0.02 Ω ·cm) 300 μ m thick Czochralski (Cz) silicon substrate doped by Sb donors.

2. A thin (**50** μ **m**) medium resistivity (ρ =**50** Ω ·**cm**), **epitaxial silicon layer** doped by P donors has been grown on the CZ substrate forming a simple n-n⁺ structure.

3. p^+ -n junction formed by **B** implantation on the epitaxial layer in a standard way using planar technology in order to obtain p^+ -n-n⁺ silicon detectors.

4. The detector active thickness is that of the epitaxial layer.

Experimental details

The parameters of the epitaxial silicon detectors used for the investigation of defect centres

Device	Sample A		Sample B	
Fluence $[10^{14} \text{cm}^{-2}]$	3.0		9.0	
Room temperature	V _{dep} [V]	$N_{eff} [10^{13} \text{ cm}^{-3}]$	V _{dep} [V]	$N_{eff} [10^{13} \text{ cm}^{-3}]$
(295K)				
Before irradiation	128.9	7.60	135.1	8 32
$t_{anneal} = 0 \min$	96.0	5.66	91.5	5.63
$t_{anneal} \approx 1 \times 10^5 \text{ min}$	79.6	4.70	34.5	2.12

Charge carrier concentration at 100 K determined from current measurements:

- sample A 5x10⁷ cm⁻³
- sample B 5x10¹¹ cm⁻³.

Results of HRPITS measurements

Experimental spectral fringes obtained by two-dimensional correlation procedure applied to the analysis of photocurrent decays for P-doped epitaxial Si irradiated with high-energy protons and annealed at 80 °C for 10⁵ min. (a) Proton fluence 3x10¹⁴ cm⁻²; (b) proton fluence 9x10¹⁴ cm⁻².

The solid lines illustrate the temperature dependences of emission rate for detected defect centres.

Results of Laplace PITS measurements

PITS spectra obtained by means of inverse Laplace transform applied the analysis of the photocurrent decay measured at 104 K for P-doped epitaxial Si irradiated with high-energy protons and annealed at 80 °C for 10⁵ min. (a) Proton fluence 3x10¹⁴ cm⁻²; (b) proton fluence 9x10¹⁴ cm⁻².

Conclusions

- We have shown that the irradiation of the epitaxial silicon with the proton fluences of 3×10^{14} and 9×10^{14} cm⁻² gives rise to the formation of shallow donors, divacancy V₂^{--/-} and oxygen-related complexes such as V₂O^{--/-}, VOH^{-/0} and V₂O^{-/0}.
- The irradiation with the fluence of 3x10¹⁴ cm⁻² results in much stronger compensation of shallow donors with deep acceptors compared to the irradiation with the fluence of 9x10¹⁴ cm⁻².

Acknowledgement

This study was carried out within the framework of the RD 50 project with financial support of the Polish Committee for Scientific Research.