

How can RD50 contribute to the pixel detectors after an LHC upgrade? Approaches not (yet) considered Problems **Coming Pixel Detectors** What can we realistically do in near future (1yr)? What is a realistic aim for the next years? What is (yet) completely missing?

- Monolitic Detectors
 - MAPS (usually mentioned in context of LC)
 - Radiation hardness
 - Collection speed / high rate capability
 - DEPFETs (also more suited for LC like environment)
 - Radiation hardness
 - Readout mode / speed
- "New" materials
 - Availability
- "New" structures
 - Maturity (large scale application)

Pixel Specific Problems

T. Rohe Pixels for LHC upgrade 4th RD50 workshop

- Readout Electronics
 - Chips hardly available (might change very soon if one accepts "class B" chips from experiments in construction)
 - Chips are very specialized and require complicated (and expensive) read out chain (unrealistic to be operated by "outsiders")
- Bump-Bonding
 - Expensive
 - Only possible on wafer level (in most cases)

But:

• A small pixel sensor contains all important features of a full size module

- R&D for pixel detectors
 - Involves many financial and personnel resources (probably not available in RD50)
 - Or is done "parasitic" to Experiments under construction
- Pixel detectors currently under construction:
 - ATLAS,CMS, BTeV: all also members of RD50 but very busy with building their detectors
 - TESLA/LC, Alice (probably not interested "ultraradiation hard" detectors)
 - Panda and CBM at GSI: Still in a very early stage of R&D

Goal for the near Future

- Find the limitations of the present "conventional" n-in-n sensors
- How can the be extended using defect engineered material (However trapping, which is up to now not engineerable, will limit the life time)?
- Can a level of 3E15 cm⁻² be reached ?
 - Expected signal height ~ 25% ≈ 6000 electrons (very crude extrapolation) → still a useful device (spatial resolution might be degraded)
 - Saw very promising results this workshop
 - Would imply pixel layers at $r \ge 8$ cm (L=1E35)
 - For lower radii present readout electronics will not work anyhow (no "fast" solution possible)

Two activities currently under way

- "Simulation based" activities
 - Understand charge collection behaviour observed in test beam experiments and its degradation
 - ATLAS: Lari et al.
 - CMS: Swartz, Chiochia et al.
 - Use these models and new "pad detector characterisation data" (e.g. trapping time constants for fluences > 1E15) to extrapolate

- Feed "special" detectors into the quality monitoring procedure of ATLAS and CMS:
 - Sensors with (slight) design variations (fabricated aside the production sensors)
 - CMS: Gap sizes (p-spray sensors), p-stop geometries, etc. tested in test beam (CERN and FNAL) and with laser
 - ATLAS, BTeV: ?
 - Sensors irradiated to fluences > 1E15
 - CMS: Next irradiation (starting next week) and SPS test beam this summer
 - ATLAS, BTeV: ?
 - Sensors processed on not-DOFZ silicon
 - CMS (US): Magnetic Cz wafer with Sintef (may be also with CiS)
 - ATLAS/BTeV: ?
 - "New" Sensors: ???

Goals for Mid Term Future

- Develop a not experiment specific easy readout system (including a simple ROC with non zero suppressed analogue read out)
 - currently done at PSI, pitch: 100×150µm², chip size
 ~ 20mm² (but is not a "high priority project", chips available on CERN-MPW 14 ???)
- Bump bond "new" structures (can be anything available on 100mm wafers) to such or any other ROC and test with laser, source or particles.
- Any other proposals ???

- Presently there is no activity for
- Cheaper pixel detector for replacement of inner strip layers (r<30cm) e.g.:
 - Single sided "n on p" sensors ??
 - There are very promising activities in the strip community
 - Is there space for a 4mm × 5mm pixel device ?
 - Bump bonding will be very difficult (single die)
 - Special care for module and guard ring design
- Very cheap "Makro pixels" (30<r<50cm)
 - 1 ROC per sensor and signal routing (MCMD? Interesting for ATLAS/Wuppertal?)
 - 150mm wafers?

Please comment and make further suggestions!!!