

Status of ITC-irst activities in RD50

M. Boscardin ITC-irst , Microsystem Division Trento, Italy

Materials/Pad Detctors

Pre-irradiated silicon - INFN Padova and Institute for Nuclear Research of NASU, KieV;
Detectors on MCz, Cz and Epitaxial silicon - SMART collaboration: INFN of Bari, Firenze, Padova Perugia, Pisa and Trieste;

New detectors

- •Thin Detectors INFN of Firenze and Padova;
- •3-D detectors *Glasgow and CNM Barcelona*.

Pre-irradiated material

Layout

- BaBar detector masks (single side)
- Diode + test structure

Silicon

- Fz <100> n-type 6 k Ω
- MCz <111> n-type Okmetic >500 Ω

Pre-irradiation

- Pre-irradiation by fast neutrons at Kiev reactor, fluence 10¹⁷n/cm²
- annealing at a temperature of 850°C
- Polishing, lapping

rocess

- Fz material = standard Irst (LTO, sintering@420°C)
- MCz material = No LTO and sintering @380°C.

Electrical Characterization

Туре	n		V _{dep} (V)	N _{eff} (10 ¹¹ cm ^{−3})	ρ (kΩcm)	j _D (μ Α/cm ³)
Fz	1	reference	60	6	7.7	5–15
	1	Pre-irradiated	75–115	8–12	4–6	2–3
	2		70–110	7–11	4–7	0.5–4
	3		65–110	6.5–11	4–7	0.4–0.9
	4		70–95	7–9.5	5–6.5	2–8
	5		60–125	6–12.5	4–8	4–16
MCz	1	reference	450	85	0.55	0.7
	1	Pre-irradiated	800	150	0.3	1-2
	2		490–730	90–140	0.33–0.5	0.6–6

Data from INFN Padova

In northership with Kiev and TNFN Padava

diodes have been tested on wafer and cut

now:

Irradiation by:

- 1. 24 GeV protons at CERN;
- 2. Fast neutrons at Kiev and Lubljana Research Reactor;
- 3. 58 MeV Li ions at LNL INFN Tandem Padova.

Run SMART

SMART collaboration: INFN groups of Firenze, Pisa, Trieste, Bari, Padova, Perugia and ITC-irst

5 + 5 Microstrip detectors per wafer AC coupled, poly-resistors biased

external dimension of about 6x47mm

pitch	Im	number		
50	15	20	25	64
100	15	25	35	32

Width/pitch	field plate		
15/50	2	4	6
25/100	4	6	8

SMART layout

<u>Square Diode</u> Area 13.6 mm2 DIE 6x6mm Multiguard structure

27 per wafer

<u>Circular Diode</u> Area 4 mm2 DIE 4×4mm Multiguard structure

10 per wafer

<u>Test Structure</u> MOS capacitor (Poly) Gated Diode, Capacitors, resistors, .. DIE 6x6mm

9 per wafer

<u>Test Structure</u> Diode area 4 mm2, double G MOS capacitor (Metal) DIE 6x6mm

13 per wafer

Process

- •STANDARD (LTO as passivation layer, sintering@420 °C)
- NO passivation, sintering @380°C or @350°C

Silicon

- •Fz n-type 6 k Ω -cm <111>
- •MCz n-type >500Ω-cm <100>
- •Cz n-type >900Ω-cm <100>
- •Epi ITME (50 and 75 mm 0.02Ω -cm)

Process Status •Process just completed

Thin Detectors

in collab. With INFN of Firenze and Padova;

•3-D detectors

in collab. With Glasgow and CNM Barcelona.

Thin Detectors

Standard process (single side)
Silicon wet etching (TMAH Si <100>)
From 300 µm to 50 µm

square diodes (1.9 mm²)

Irradiation with Li ions: depletion voltage and N_{eff}

Data from TNEN Section of Padova

Thin silicon diode irradiation: leakage current

Note from TNICNI Dedavis

• Irradiation by 24 GeV protons at CERN: Φ =10¹⁵ p/cm²-10¹⁶ p/cm² (7-28 May 2004)

 Irradiation by 58 MeV Li ions at Padova: Φ=8×10¹³ Li/cm²-16×10¹³ Li/cm² (23 May 2004)

• Comparison of the damage induced by 24 GeV protons and 58 MeV Li ions in diodes with different thickness ($50\mu m - 100\mu m - 300\mu m$):

-depletion voltage;

- -leakage current density at full depletion;
- -*CC*E;

-annealing characteristics.

CCE - Florence set-up

Note from C. Todi F. Forendi AA. Davedi (TNIFN) Firenes)

non irradiated diodes	50µm	100µm	300µm
1.9 mm ²	3	3	3
3.5 mm ²	1	1	2

Diodes irradiated with Li iones at 58MeV and $10^{13}\ cm^{-2}$ Annealing at 80°C for 4 min

Li ⁺ irradiated Diodes	50μm	100µm	300µm
1.9 mm ²	1	1	2

3-D detector

diameter 15 μ m

20KU 10Pm WD22 X400 >___< ~200 micron

In partnership with Glasgow and Rancelong

- •Mask: Glasgow
- •CNM Barcelona: deep-trench
- •Irst: process

3-D poly and IEOS deposition

In partnership with Glasgow and Rarcelona

Aluminium sputtering

luminium is deposited b to the first D-30 µm

In northership with Glasgow and Barcelona

3-D photoresist definition

Optical Microscope

<u>Hole</u> •diameter 5µm •distance 5µm

SEM picture

In northership with Glasgow and Rancelong

3-D photoresist definition

In partnership with Glasgow and Rarcelong

rocess:

- . standard Irst process for detector realization (sintering @ 420°C)
- 2. no LTO deposition (sintering at 380°C)

	Fz <111> n-type 6 Kohm		MCz <100> n-type >0.5 Kohm	
FDV (V)	23.2	23.9	> 1700 estimated	367 - 450
Q _{ox} (1/cm ²)	1.56E+11	3.40E+11	2.68E+10	4.63E+10
I @ 100V (nA/cm ²)	0.50	2.67	0.97	0.78
s ₀ (cm/sec.)	0.9	1.5	0.4	0.7