

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Radiation testing on opto-electronic devices at SCK·CEN

4th RD50 Workshop CERN, Genève - CH, 5-7 May 2004

Francis Berghmans

Benoît Brichard, Alberto Fernandez Fernandez, Ivan Genchev, Andrei Goussarov, Marco Van Uffelen

- Short presentation of SCK-CEN
- Irradiation facilities
- Some typical results on optoelectronic devices
- Future work

SCK•CEN

Studiecentrum voor Kernenergie Centre d'étude de L'Energie Nucléaire

Laboratories : Boeretang 200 B-2400 Mol Belgium

Registered Office : Av. Herrmann Debroux 40-42 B-1160 Brussels Belgium

SCK•CEN is a Research Institute

- Institute of Public Utility
 Ministry of Economic Affairs
 - Secretary of State for Energy
- 600 Employees
 - > 200 scientists
- Annual Turnover 74•10⁶ €
 - 50 % Governmental subsidy -50 % Contracts
- Core activities
 - Nuclear Safety and Radiation Protection
 - Industrial Applications of Radiation
 - Back-end of the Nuclear Fuel Cycle
 - Non-energetic applications of nuclear energy
 - increasingly relevant to society medicine
 - Sustained development and non-technical aspects
 - social and economical factors, ethics, liability

Our main R&D environment is ITER as supported by the European Fusion Programme

- Environmental constraints
 - > 100 MGy (10 Grad)
 - ➢ 10 kGy⋅h⁻¹ (1 Mrad⋅h⁻¹)
 - Occasional neutrons
 - ≻ 150 °C
- Instrumentation systems
 - Communication
 - Remote-handling & sensors
 - Fusion plasma diagnostics

We've been experimenting on a broad range of devices/materials/technologies

- Laser diodes (AlGaAs VCSELs)
- Photodiodes (Si, InGaAs)
- A wealth of optical fibres
 COTS and custom
- Fibre Bragg Gratings
- WDM Couplers
- Liquid crystals
- Fibre sensors
- Electronics
- Motors
- Polymers
- Cables (polymers, mineral insulated, ...)
- Connectors & feedthroughs

• ..

We exploit SCK·CEN's irradiation infrastructure

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

	Brigitte (⁶⁰ Co - fuel)	RITA (⁶⁰ Co)	Geuse II (fuel)	LNC (⁶⁰ Co)	BR1
Dose-rate max.	1.4 krad∙s ⁻¹	300 rad∙s ⁻¹	15 rad∙s ⁻¹	140 mrad∙s⁻¹	
Dose-rate min.	140 rad•s⁻¹	30 mrad∙s⁻¹	2 rad∙s⁻¹	0.3 mrad•s ⁻¹	BR2
Vol. (mm²)	900 x 220 900x80	600 x 380	400 x 380	Hot cell	
Vol. Temp.	50 - 200 °C	RT - 100 °C	RT	RT stabilised	

VUB Cyclotron

CERN irradiates opto-electronics for CMS in RITA

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Vacuum System Module for RITA and GEUSE II is designed

- Vacuum: 10⁻⁵ mbar
- Height: 600 mm
- Diameter: 200 mm
- Temperature: 120°C
- Organic material mass up to 1 kg

BR1 is a versatile neutrongamma irrradiation tool

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

- Natural U, graphite-moderated, air-cooled research reactor
 - reactor physics experiments as neutron reference source
 - calibration of nuclear detectors
- Characteristics
 - Channels
 - φ 80 mm, square 100 ×100 mm²
 - fast $n > 2.86 \ 10^8 \ n \cdot cm^{-2} \cdot s^{-1}$
 - thermal $n < 3.5 \ 10^{11} \ n \cdot cm^{-2} \cdot s^{-1}$
 - around 50 °C (control possible)
 - > Sphere
 - empty \$\$\overline\$ 1000 mm

 - empty thermal $n < 7 \ 10^8 \ n \cdot cm^{-2} \cdot s^{-1}$
 - 1 cm U shield fast n 2.18 10⁸ n·cm⁻²·s⁻¹

BR2 is a high neutron flux material testing reactor

- PWR type reactor (flux up to 10¹⁵ n·cm⁻²·s⁻¹)
 - test of fuels and materials
 - production of radioisotopes
 - silicon doping for electronics industry
- Characteristics
 - Central channels
 - \$\$ 84 mm
 - fast $n 2 \ 10^{14} \ n \cdot cm^{-2} \cdot s^{-1}$
 - thermal $n 4 \ 10^{14} \ n \cdot cm^{-2} \cdot s^{-1}$
 - $(5 \text{ W} \cdot \text{g}^{-1} \text{ Al})$
 - > Peripheral
 - \$\$ 200 mm
 - fast $n 3.5 \ 10^{14} \ n \cdot cm^{-2} \cdot s^{-1}$
 - thermal $n 1 \ 10^{14} \ n \cdot cm^{-2} \cdot s^{-1}$
 - (4 W·g⁻¹ Al)

Aging, lifetime testing and temperature cycling studied in CLARA (2 m³)

We can cover most radiation effects application fields

TUDE DE L'ÉNERGIE NUCLÉAU

Gamma rays and Neutrons have different effects on VCSEL P-I curve

14

16

18

accelerates degradation F. Berghmans et al., "Design and Characterization of a Radiation Tolerant Optical Transmitter using Discrete COTS Bipolar Transistors and VCSELs", IEEE Transactions on Nuclear Science 49, pp. 1414-1420, 2002

ÉTUDE DE L'ÉNERGIE NUCLÉAI

COTS p-i-n photodiodes were monitored in-situ under radiation

- First ⁶⁰Co gamma experiment
 6 Si-PD
 2 kCv/b (10% accur) 2 MCv 60%C + 1
 - > 2 kGy/h (10% accur.), 2 MGy, 60°C ± 1.5°C
- Mixed neutron/gamma experiment
 pre-irradiated Si-PD (2 MGy)
 7.10¹⁵n/cm², 20 kGy (background), 60°C ± 1.5°C
- Second ⁶⁰Co gamma experiment
 > 8 Si-PD & 8 InGaAs-PD
 > 15 kGy/h (10% accur.), 10 MGy, 60°C ± 1.5°C

A typical result for a Si photodiode after 2 MGy

M. Van Uffelen et al., "Reliability study of photodiodes for their potential use in future fusion reactor environments", *SPIE Proceedings* **5465**, 2004, to be published

D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Neutron displacement damage is an issue

Total dose : $D_{\gamma} = 20 \text{ kGy}$ Fluence : $n_{\text{th}} = 7 \cdot 10^{15} \text{n/cm}^2$

M. Van Uffelen et al., "Reliability study of photodiodes for their potential use in future fusion reactor environments", *SPIE Proceedings* **5465**, 2004, to be published

InGaAs photodiodes show different dark current curves after irradiation

M. Van Uffelen et al., "Reliability study of photodiodes for their potential use in future fusion reactor environments", *SPIE Proceedings* **5465**, 2004, to be published

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

InGaAs photodiode dark current increases monotonously $\sim 10^3$

Dose rate : $dD_{\gamma}/dt = 15 \text{ kGy/h}$

Packaging is an issue

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Before irradiation

After irradiation

TUDE DE L'ÉNERGIE NUCLÉAU

Future work is needed and could benefit from interaction with RD50

- Effects are generally understood but phenomenologically treated
 - No thorough theoretical investigation on material radiation effects RD50
 - Material effects, device structure effects and device performance need to be linked
 - Modelling is essential for reliability assessment RD50
- Further experimental work
 - Gain statistical significance
 - Qualification is essential but expensive and time consuming
- Our irradiation facilities are available
 - and can be adapted to your specific needs RD50