

I.N.F.M.

Epitaxial SiC detectors : Charge collection efficiency and photoluminescence characterisation

M. Bruzzi, S. Lagomarsino, S. Miglio, S.Sciortino Dipartimento di Energetica , Florence Italy

F. Nava, P. Vanni Dipartimento di Fisica, University of Modena, Italy

G. Wagner Institut fur Kristallzuchtung,Berlin, Germany

R. Schifano, A. Vinattieri Dipartimento di Fisica, University of Florence

OUTLINE OF THE TALK

- Samples description
- CV, IV electrical characterization
- charge collection efficiency (cce) characterization under exposure to a ²⁴¹Am alpha source
- charge collection distance measurements under exposure to a MIP from a ⁹⁰Sr b source
- Near band-edge recombination as a probe of crystalline quality

Schematic of the IKZ samples

circular Schottky contact $Ni_2Si \ \mathbf{f} = 1.5 \ \mathbf{mm}$	•Device produced by
n ⁻ , 4H – SiC, 40 ± 2 m m epitaxial 4H-SiC	Alenia Marconi •Optical
n ⁺ , 4H – SiC, 360 m n <i>substrate</i>	measurement of thickness
	•Ni ₂ Si metallisation: better adhesion, higer
Ohmia contact	reproducibility

Ohmic contact -*Ti/Pt/Au*

DEVICE UNDER TEST

DEVICE UNDER TEST

Sample #Q exhibits a very low reverse current and its ideality factor is very close to one

SAMPLE	N _{eff} [10 ¹³ /cm ³]	qV [eV]	n	REVERSE-CURRENT (at 300 V) [A]
Р	6,25	1.55	1.17	High (4.0 x 10 ⁻⁹)
G	4.73	1.49	1.13	Medium (8.6 x 10 ⁻¹¹)
Е	5.68	1.51	1.13	Medium (1.0 x 10 ⁻¹⁰)
С	7.74	1.53	1.04	Very low (4.0 x 10 ⁻¹²)
0	7.66	1.60	1.54	Very high (2.8 x 10 ⁻⁶)
D	6.80	1.53	1.13	Medium (5.7 x 10-10
Q	4.73	1.56	1.00	Very low (2.0 x 10 ⁻¹²)
M	6.82	1.59	1.07	Very high (> 10 ⁻⁸)
Н	8.13	1.59	1.07	Medium (4.37 x 10 ⁻¹⁰)

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

For extrapolation by forward IV measurements: $I_0=0.48e^{-24}A$ n(ideality factor) = 1 F_{B0} barrier height = 1.77eV

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

Inverse J_s measurements: low increment in dark current with increasing temperature

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

C-V measurements

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

 $V_{dep} = 60 V$

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

Saturation at 15÷20 V bias, depletion \approx 20µm

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

Saturation of FWHM above 10V

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

No relevant dependance of CEE Spectrum on temperature

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

Measure of collection efficiency of b MIP

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

PULSE HEIGHT SPECTRUM AT DIFFERENT FIELDS

DECONVOLUTION AT SATURATION LANDAU CLEARLY SEPARATED FROM PEDESTAL

Counts

electrons/55 per **m** The cce MIP meaurements are consistent with the other characterization: Vsat = $60V N_{eff}$ = 4 10¹³/cm³ 100% efficency

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

Photoluminescence measurements

- Sample excitation by means of a frequencydoubled ps dye-laser (average power at 300 nm 5 mW, rep rate 76 MHz)
- PL detection by means of a standard timeintegrated photon counting

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

Photoluminescence main result

- Evidence of a strong correlation between the doping level and the bound (BE) and free exciton (FE) emissions.
- In particular an increase in the doping level significantly reduces the intrinsic (FE) radiative recombination.

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

Correlation suggested by I.G. Ivanov et al. J.Appl. Phys. 80 (1990) 3504

Slope A=4.5 10^{14} cm⁻³ to be compared with the value reprted by Ivanov (5.2 10^{14} cm⁻³) The difference can be ascribed to the different samples temperature in the two analyses

By tuning the excitation wavelength the penetration depth can be changed. When the probe reaches the bulk the BE feature increases and a luminescence band is strongly enhanced.

M. Bruzzi et al. 2nd RD50 Workshop, CERN May 18-20 2003

Conclusions

- IKZ compares favourably with CREE
- lower doping level, higher thickness, more reliable metallization, high diffusion length
- higher compensation introduces disuniformity in the N_{eff} profile: test with excitonic recombination are foreseen before metallization , need of a buffer layer
- Independence of temperature of the device response
- Landau MIP spectrum resolved from the pedestal

Future Plans

- Test samples of 100 µm thickness and low doping level ~10¹³/cm³
- Study the homogeneity with optical measurements
- Radiation hardness study, possibly increasing the sensitivity of the cce MIP measurements