Simulation of SiC radiation sensors

UNIVERSITY of GLASGOW

UNIVERSITY of GLASGOW

PPE – Detector Development Group Glasgow University

R.Bates, M.Rahman, W.Cunningham, T.Nelson, T.Quinn

Contents

- Motivation
- Simulation details
- Diode description
 - no screw dislocations included
- Defects added to the simulation
- Results
 - IV curves Epi and bulk
 - CCE curves Epi and bulk
- Conclusions

Introduction

- Many SiC radiations detectors made
- Different types of SiC material
- Defects characterised limited number of parameters reported in each paper
- Some radiation tests preformed
- Want to try to understand if SiC should be more radiation hard from IV, V_{fd} and CCE view point

Medici simulator

Medici simulator

- Models 2D distribution of potential and carrier concentrations in a device
- Can predict electrical characteristics for an arbitrary bias condition

Solves

Poisson's Equation and Continuity Equation

$$\varepsilon \nabla^2 \phi = -q \left(p - n + N_D^+ - N_A^- \right) - \rho_s$$

$$\frac{\delta n}{\delta t} = \frac{1}{q} \nabla J_n - U_n$$

$$\frac{\delta p}{\delta t} = -\frac{1}{q} \nabla J_p - U_p$$

electrons

holes

Material Modelling

PARAMETER	VALUE
Bandgap at 300K (eV)	3.23
Energy / e-h pair (eV)	4.4
Atomic numbers	12 and 14
Electron lifetime (µs)	0.1
Hole lifetime (µs)	1
Permittivity	9.7
Affinity (V)	3.5
Electron effective mass	0.28
Hole effective mass	4.2
Electron sat. velocity (cm/s)	1.743x10 ⁷
Hole sat. velocity (cm/s)	1.5x10 ⁷
Field dependent mobility m	odel used

Defect	Energy (eV)	Conc (cm^{-3})	$\tau_{elec}(s)$
Defect:	E _c -0.40	2.1×10^{13}	4.5x10 ⁻⁹
Vanadium:	E _c -0.98	$2x10^{15}$	6.67x10 ⁻⁷
Z _{1/2} :	E _c -0.66	$3x10^{16}$	1.42×10^{-10}

 No Macroscopic defects added, i.e. Screw defects/dislocations
 Concentration of Z_{1/2} varies due to irradiation Range 3x10¹⁶ to 3x10²⁰cm⁻³ simulated

Models

- Shockley-Read-Hall
- Impact ionisation
- Trap assisted and band-to-band tunnelling

Diode description

Results – pre-irradiation

- Charge collected from $300\mu m$ bulk diode

- 1250 e/h pairs deposited in centre of device
- 100% CCE observed [®]
- $\tau_{coll 95\%}$
 - 116ns @100V
 - 24.8ns @600V

Q collected at Ω contact (elecs)

Results – pre-irradiation

- Charge collected from $100\mu m$ bulk diode

- 1250 e/h pairs deposited in centre of device
- 100% CCE observed
 - τ_{coll 95%}
 22.5ns @100V
 - 7.0ns @600V

Results – with defects

Increasing conc. Z_{1/2} defect added

Q collected at Schottky contact (holes)

Epitaxial SiC – $100\mu m @ 100V/w$

No defects

- $Q_{coll} = 98\% (1230e)$
- $\tau_{coll 95\%} = 19 ns$
- Z1/2 defects
 - Q_{coll} = 88% (1100e)
 - τ_{coll 95%} =21ns

• No difference for $[Z_{1/2}] = 10^{17}$ and 10^{20} cm⁻³

Conclusions

- 1st attempt to simulated SiC detectors
- Bulk and epitaxial style devices work well
- 300um Bulk @600V
 - 100% CCE
 - τ_{coll} ~ 25ns
- Epitaxial 100um @100V
 - 98% CCE
 - $\tau_{coll} < 20$ ns
- Defects initially reduce CCE
 - No further reduction observed for higher [Z1/2]
- More data and more complexity required