

SiC activities at Linköping University

A. Henry and E. Janzén

SiC : Prof. Erik Janzen growth (bulk and epi) defect and characterisation

Nitride : Prof. Bo Monemar growth optical characterisation

Electronic Structure : Prof. L. Johansson photoemission Compound Semiconductors : Prof. Per-Olof Holtz optical characterisation

Spintronic : Prof. Weimin Chen Magneto-optic measurements

SiC activities

Growth

Bulk

Sublimation High temperature CVD

Epitaxy

Horizontal Hot Wall CVD

.

Vertical Hot Wall CVD

Sublimation Epitaxy

LPE

Simulation

Characterization

Optical

PL, PLE, Time resolved PL,

FTIR, FTPL, CL

Electrical

Hall, IV, CV, DLTS, MCTS

Magnetic resonance

ODMR, EPR

Structural

XRD, Lang topograph

Theoretical calculation

S-Science : Sensor application Thin Film : TEM

High-Power diode

Horizontal Hot-Wall CVD

Gas Inlet H_2 carrier $SiH_4 + C_3H_8$ Doping (N_2 , TMA ...) Growth Temperature: 1600 °C in horizontal

Growth Pressure: 50 - 1000 mbar

O. Kordina

C. Hallin : surf. prep., precursor

epilayer

- U. Forsberg :MESFET
- Ö. Danielsson :Simulation

2003-05-18..20

2003-05-18..20

Degradation :

Drift of the forward current

Virgin device

Creation and expansion of stacking faults

Cathodoluminescence
X-ray Topography

Output
Image: Cathodoluminescence

Cathodoluminescence
Image: Cathodoluminescence

Image: Cathodoluminescence
Image: Cathodoluminescence

<td

P. Bergman

2003-05-18..20

ERSITET

Cathodoluminescence CL

X-ray Topography

PL at 77K

Low Temperature PL

2003-05-18..20

Today (2 inch diam) Thickness typically 30-40 μ m (80 μ m) Unif = σ /mean < 8% Background doping level n-type (nitrogen) 1-2E14 N-doping 1E15 – 5E18 Unif < 20% Al-doping 5E15 – 1E19 Unif <20% Typical lifetime (35 um, 2E15) > 250 μ s

Future work related to SiC-CVD

- Degradation : reduction of critical defects
- Lifetime limiting defects
- growth on "non-standard" surface
- $\delta\text{-doped}$ layers
- Regrowth
- Other dopant : P, As, B, V...

2003-05-18..20

High Frequency Device

SiC MESFET with Commercial S.I. substrate

Degradation of I-V static characteristics

LABORATOIRE CENTRAL DE RECHERCHES

C. Brilinski

ECSCRM 2000 + JESICA PROJECT

OKMETIC 2-inch diameter 4H-SiC substrates pilot products

Future work related to HTCVD

Characterization :

- identification of defects in SI SiC and understand their properties
- Support to Okmetic (SI, N and P substrates)

Characterization

Most studied defects in SiC after irradiation / implantation and annealing (2 MeV - T > 1200 C)

(T. Egilsson)

(L. Storasta)

2003-05-18..20

LINKÖPINGS UNIVERSITET

⁽L. Storasta)

Characterization

Defect study : Atom displacement C : 90 keV

Si: 220 keV

Face dependent ?

N-type 2.5E15 cm⁻³ epi Low energy electron irradiation 80-300 **keV**

L. Storatas

Si-face 4H epilayer

L. Storatas

F. Carlsson

• Photoluminescence

120 keV 160 keV d_1 Si-Side d₁ pho d_1 10 c1 phonon vanu b₁ Si-Side PL Intensity (a.u.) PL Intensity (a.u.) b1 phonon band g_2 b1(78meV) c₁ a_1 L b_1 Si-side L $g_2 \quad g_1 \quad f_1$ c_1 c2 e₁ g1 b1 phonon band $b_1(78meV)$ C-Side $d_1 c_1$ C-side g₂ a₁ d_1 $g_1 e_2$ L g_2 g_1 c2 c1 C-Side 10 4420 4260 4340 4500 4300 4440 Wavelength (A) Wavelength (Å)

2003-05-18..20