Simulation of Irradiated Silicon Pixel Detectors for Future High Energy Physics Experiments

Devis Contarato, University of Hamburg

Gregor Kramberger, DESY

2nd RD50 Workshop

CERN, 18-20 May 2003

- Introduction & motivation
- Basics of device simulation
- Charge collection in irradiated segmented devices
- Simulation of thin pixel detectors
- Summary & Conclusions

Position sensitive silicon detectors will be widely used in future HEP experiments. At high particle fluences (up to 10^{16} cm⁻² at SLHC) trapping times become comparable with charge collection times: loss of drifting charge – trapping.

Thin pixel detectors: a way to cope with high fluences?

Advantages

- $V_{fd} \propto D^2$: at high N_{eff} detectors can be fully depleted
- Short collection distance i.e. collection times
- Low mass, small radiation length X₀
- Finer detector granularity to cope with higher occupancy

<u>Disadvantages</u>

• Small signal: need for radiation hard low noise read-out electronics

- Can thin pixel detectors be successfully operated at fluences around 10¹⁶ cm⁻²?
- How does the geometry of the electrodes influence the detector performances?
- What is the impact of trapping on the sensor charge collection properties?

Basics of simulations

Current induced at the electrodes by a point charge q drifting in the electric field of a reversely biased silicon detector:

The Ramo field describes the electrostatic coupling between the drifting charge and the sensing electrode

Basics of simulations (2)

- potentials were calculated with custom-made software and ISE-TCAD package
- *n*-type bulk, $N_{eff} = 10^{12} \text{ cm}^{-3}$
- all simulations performed at T=263 K

6

What is not considered in the simulation:

- a uniform charge generation along the track is assumed (no GEANT simulation)
- $N_{eff}(\mathbf{r})$ =const: a homogeneous effective dopant concentration is assumed (double-junction effect is not taken into account)
- no further electronic processing of the induced current

Charge collection in irradiated segmented detectors

Diode: electrons and holes drifting to opposite directions in the diode contribute equally to the induced charge

Pixel detector: carriers drifting to the pixel side contribute to the larger part of the induced charge

Charge collection in irradiated segmented detectors (2)

Irradiated detectors: smaller CCE in p⁺-n detector compared with n⁺-n detector with CCE of the diode in between

Induced charge in segmented detectors

p⁺ - induced charge on neighboring electrodes has the same polarity as for the hit electrode

 n^+ - induced charge on neighboring electrodes has the opposite polarity as for the hit electrode

p⁺ - wider clusters

Induced charge in segmented detectors (2)

Current induced in the first neighbors

This effect is far more important in irradiated detectors with **p**⁺ pixel due to the much larger hole trapping

Incomplete charge collection due to trapping \rightarrow Charge sharing mechanism

Simulation of thin pixel detectors

Simulated geometry: 3x3 arrays; pixel pitch $70x70 \mu m$, implant width $50 \mu m$ Thicknesses: 25, 50, 75, 100 μm . Central hits only considered.

Weighting potential along central pixel: no difference between n⁺ and p⁺ pixels is expected for Implant Width/Thickness>1: diode-like case!

Thin pixels: induced currents

D=50 μ m, N_{eff} = 0.0071 cm⁻¹x Φ_{eq} (DOFZ), operated at V_{fd}.

Simulated charge collection times are short (at $\Phi_{eq} = 10^{16}$ cm⁻² of order 0.15 ns for 50 µm thick detector). What are the consequences?

Thin pixels: collected charge

- At best only 1000-2000 e at high fluences
- Small difference between different pixel thicknesses at 10¹⁶ cm⁻²
- Much better performance of n-type pixels for IW/D<1

Thin pixels: trapping-induced charge sharing

- \bullet The charge induced in the neighboring pixels can be significant if Implant Width/Thickness<1
- Diffusion is negligible due to the short collection times
- Very beneficial n-type pixels (possible use of signals of opposite polarity to enhance S/N)

What if we make a device that has ideal N_{eff}~0?

- the signals don't differ much from the case of large N_{eff}
- higher electric field doesn't improve the induced charge significantly (saturation of the drift velocity)

Charge collection in segmented detectors:

• "Segmentation" in terms of charge collection means how much weighting field deviates from constant (diode)

• In irradiated segmented detectors it is beneficial to collect electrons (n⁺n pixels). Incomplete charge collection due to trapping leads to a charge sharing mechanism

Thin pixel detectors:

- Expected signals are ~1000-2000 e after $\Phi_{eq}=1\times10^{16}$ cm⁻²: may be large enough, but put higher requirements on the read-out electronics
- IW/D>1: no differences between n⁺ and p⁺-type pixels (diode-like case)
- IW/D<1: better performance of n⁺-type pixels
- even if detectors are operated at N_{eff} ~0 expected signals are ~1000-1600 e after Φ_{eq} =1x10¹⁶ cm⁻²

