Silicon 3D detectors irradiated with pions and protons

UNIVERSITY of GLASGOW

Patrick Roy

G. Pellegrini, V. Wright, R. Bates, L. Haddad, J. Melone, V. O'Shea, K.M. Smith, M. Rahman

Results from irradiation: -Pions -Protons

Introduction

Fabrication steps

Dry etching

Inductively Coupled Plasma

- Mask: photoresist
 Gas: SF₆
 Coating: C₄F₈
- •**Diameter**: 10 µm
- •**Spacing**: 85 μm
- •**Depth**: 130 μm
- •Etch time: 100 minutes

Aspect ratio 13:1

Electrical contacts

•Metal evaporation:

Ti (50 nm) Au (105 nm)

•Tracks of Al (150 nm) (over the SiO₂ layer)

•Wire bonding (25 µm wire)

Irradiation at PSI*

* Irradiation performed by K. Gabathuler, M. Glaser and M. Moll.

Capacitance measurements (pions)

Leakage current (pions)

Fluence (1E12 pions/cm2)

Alpha spectroscopy

5.5 MeV alpha in Si before irradiation

Alpha spectroscopy (irradiated)

5.5 MeV alpha in Si after 1E14 pi/cm2

Irradiation at CERN*

Irradiation with 24 GeV/c protons at CERN Flux of 1-3 x 10¹³ p/cm²/h 7 fluences between 5 x 10¹² and 5 x 10¹⁴ p/cm² 13 high resistivity n-type silicon samples

* Irradiation performed by M. Glaser and M. Moll.

Leakage current (protons)

Capacitance measurements (protons)

19/05/2003

P. Roy

In development

Improved aspect ratio of vias -Dry etching (~30:1*) -PhotoElectroChemical etching (>30:1*)

Improved electrodes -pn junction

Improved readout electronics

 -MEDIPIX1*
 -LHCb VELO
 -ATLAS SCT

* 3D-RID collaboration: ppewww.ph.gla.ac.uk/3D-RID

pn junction

Sample's preparation:

-creation of central via
-boron doping
-creation of surrounding vias
-metal evaporation

3D MEDIPIX1*

MEDIPIX chip

- -Pixels per chip -64 x 64
- -Pixel size -170 x 170 μm²
- -Leakage current compensation
- -Sensitive to positive input charge only

Vias diameter: 10 μm Width of metal strips: 15 μm Pitch: 56.67 μm pc Cell pitch: 170.01 μm

* 3D-RID collaboration: ppewww.ph.gla.ac.uk/3D-RID

LHCb -VELO*

* Designed in collaboration with C. Parkes

ATLAS SCT

Microstrips design (barrel)

-Small version (~1 cm²) -Channel: 128 + 2 •Strip: 20 μm x 1 cm 80 μm pitch

•Hexagonal cells

•Vias: 10 μm diameter 53.3 μm pitch

Conclusion

Results from irradiation: -Pions -Protons

In development: -pn junctions -proper readout electronics

Reminder

