Activities of US Chapter of CERN RD50 On the Development of Semi-3D Si Detectors

Z. Li

On behalf of US RD50 members: BNL, FNAL, Purdue, Rutgers, and Syracuse and observers: CMU, JHU, OSU and UCSC

2nd RD50 - Workshop on radiation hard semiconductor devices for very high luminosity colliders, CERN, 18-20 May, 2003

Active Participation of US Institutes in RD50

Institutes	BNL	FNAL	Purdue	Rutgers	Syracuse
Team participation	DE NS	NS FDS	NS FDS	NM FDS	FDS NS
Capabilities	Simulation, design, processing and testing	Design and testing	Simulation, design and testing	Testing	Simulation, and testing

Observers: CMU, JHU, OSU, and UCSC

- o Close proximity
- o Largely overlapping activities
- **o Possibility of obtaining US funding**

US institutes will closely collaborate (with monthly phone conference) and coordinate their work in:

- o NS (semi –3D)
- FDS

Development of Medium and High resistivity n-type SSD and SPD: more radiation tolerance

- Low bias at the beginning
- **p**⁺- **n**⁺ /**n**/**n**⁺ configuration:
 - o Depletion from one side before SCSI
 - o Depletion from both sides after SCSI
- May work up to 1x10¹⁵ n/cm² rad.
- One sided processing
- Bias Vb may be larger than Vf to get maximum depletion depth without break down

Z. Li et al., 9th Vienna Conference on Instrumentation, Vienna, Austria, February 19-23, 2001 NIM A478, (2002) 303-3110

Simulation: p⁺- n⁺ /n/n⁺ configuration (Medium resistivity)

- Before radiation, $N_{eff} = +1 \times 10^{12} / \text{cm}^3 (4 \text{ k}\Omega\text{-cm})$
- Junction on the p⁺ contacts Simulation, V = 100 volts

Z. Li et al., 9th Vienna Conference on Instrumentation, Vienna, Austria, February 19-23, 2001 NIM A478, (2002) 303-3110

Microns

New simulation by Syracuse Univ . (Marina Artuso) Sensor before SCSI

Novel p⁺- n⁺ /n (or p)/n⁺ configuration (Medium resistivity)

- After radiation, $N_{eff} = -1 \times 10^{13} / \text{cm}^3 (5 \times 10^{14} \text{n/cm}^2)$
- Junction on the n⁺ contacts, and depletion from both sides Simulation, V = 130 volts (<<370 volts in standard structures)

Z. Li et al., 9th Vienna Conference on Instrumentation, Vienna, Austria, February 19-23, 2001 NIM A478, (2002) 303-3110

New simulation by Syracuse Univ . (Marina Artuso) Sensor after SCSI

V(n+) = 150V*V-hack= 150V* $\bullet V(p+) = 0V$ $E_{lmax} = 150$ kV/cm After radiation, $N_{eff} = -1x10^{13}$ $/cm^3$ $(5x10^{14}n/cm^2)$

Mask set layout: p⁺-n⁺/n/n⁺ configuration (Medium resistivity)

Layout of the detector structures (Electrodes are strips on the front side)

Details of front side

Step 1: p⁺ implant through 1000 A SiO₂ (B, 40 keV, 4x10¹⁴/cm²)

Step 2: n⁺ implant through 1000 A SiO₂ for guard strips (Ph, 60 keV, 1x10¹⁴/cm², and 90 keV, 1x10¹⁴/cm²)

(note: during this implant, the p⁺ implanted regions are covered by 3000 A of Al)

Step 3: Oxide step cut to bare Si

Step 5: n⁺ implant on the back (uniform implantation) through 1000 A SiO₂ (Ph, 60 keV, 1x10¹⁴/cm² and 90 keV, 1x10¹⁴/cm²)

Step 6: Etch backside to bare Si

Step 7: Deposit Al on back side (2500 A)

2d simulation along the cut line 1, and 200 μ m thick wafer n-type, N_{eff0}= 1x10¹³/cm³ (before rad.), and p-type, N_{eff} =- 1x10¹³/cm³ (after SCSI) Biases: p⁺ strips: 0 V (Electrodes for CCE)

n⁺ strips and back plane: biased to the same + voltage (a few hundreds of volts) All p⁺ guard strips and n⁺ ch-stoppers are floating

Future work plans

- **o Simulation of CCE before and after SCSI**
- Fabrication of first prototype Semi-3D Si detectors
- o Electrical testing
- o Radiation of test structures and strip detectors
- Electrical testing and CCE testing to check the radiation harness of Semi-3D Si detectors
- Improvement in design and second batch fabrication

Are guard strips necessary?

o Further testing