Improved Near Beam Particle Tracking with Radiation Hard Si Detectors at LHCb

A G Bates¹, C Parkes¹, M Rahman¹, R Bates¹, M Wemyss¹, G Murphy¹, P Turner² and S Biagi²

¹The University of Glasgow ² The University of Liverpool

UNIVERSITY of GLASGOW

2nd RD50 Workshop 19th May 2003

- LHCb VErtex LOcator introduction
- Track impact parameter resolution
- Varying VELO guard ring widths
- Baseline guard ring simulation
- Simulations of new guard ring designs
 <u>RD50 Objectives</u>
 - Increased particle tracking accuracy requires the active silicon of the detector closer to the beam line
 - Detector geometry alterations
 - > Higher radiation environment, avoid repeat replacements
 - More radiation hard materials [Cz, ...]

Alison G Bates

 Silicon detectors start 7mm from beam axis but 1mm of guard ring structure

silicon detection begins at 8mn

Alison G Bates

Impact Parameter Resolution

Effect on IP resolution - varying guard ring widths

	¥			
Ga	Guard	Increase in	Improvement of the	
220	Ring	flux (%) to	IP resolution w.r.t	Ī
<u>₹</u> 200	Width	sensitive	baseline (%)	-*-
		silicon		-
ร _{ับส} ุย 140	5mm	-44	-38.1±0.9	
ඊ100 80	0.5mm	+14.1	+5.8 ±0.7	
60 40	0.1mm	+27.7	$+10.0 \pm 0.7$	
0	-1.	з - т	-0.5 0 Circles=0 5mm log(1/	0.5 Pt(GeV))
-1.5	-1 -0.5 0	0.5 1 1.5 log (1	2 /Pt(GeV/c))	
		Alison C	Bates Crosses=0.1mm	5

Sensitive silicon radius reduction - sensitive radius 8.0 mm \rightarrow 7.5 mm

Radiation lengths transversed before first measured hit

- Mean radius of first GEANT hit in sensitive silicon reduced from 9.4 mm to 8.8 mm
- Distance over which the track is extrapolated is reduced by 3.8% Alison G Bates

• 9 n^+ guard ring implants on front. Back guard rings included.

• Introduced fluence dependent interface and bulk traps for all simulations*. Radiation damage simulated ~ $3x10^{14}$ n/cm²

* from S.Biagi of the University of Liverpool – Many thanks!

- Extra guard ring between 8th and 9th guard ring of baseline design.
- Same simulation conditions
 - **5**00 V reverse bias, $3x10^{14}$ n/cm² fluence, fixed oxide charge.
- Maximum electric field strength is 170 kV/cm [baseline 250 kV/cm]
- Test structures currently being fabricated

Alison G Bates

Reduced baseline guard ring from 1mm to 0.5mm
 Sensitive silicon now begins 7.5mm from beam axis
 Maximum electric field strength is 152 kV/cm [baseline 250 kV/cm]
 Test structures currently being fabricated Alison G Bates

- Reduced baseline guard ring from 1mm to 365 microns
 - Sensitive silicon now begins 7.365mm from beam axis
- Simulated up to $6x10^{14}$ n/cm², 500 V reverse bias & p-stops.
- Maximum electric field strength reduced by 13%
- Approximately 7% increase in impact parameter resolution
- 18% increase in flux per year received by the sensitive silicon (not the guard ring silicon)

- Reducing radius of sensitive Si in VELO sensors
 - Improves impact parameter resolution
 - Increases radiation flux to the active silicon
- Full baseline guard ring simulation
 - Maximum electric field well below breakdown field
- Amended baseline simulation
 - Further reduced the maximum electric field
- 500 micron design
 - 6% improvement to Impact parameter resolution
 - Additionally, reduced the maximum electric field

Conclusions II

Trench guard ring structures

- 7 % improvement in IP resolution
- Decrease Efield strength by 13 %

Guard Ring Width Impact on d0 Performances and Structure Simulations. A Gouldwell, C Parkes, M Rahman, R Bates, M Wemyss, G Murphy, P Turner and S Biagi. LHCb Note, LHCb-2003-034.