

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

Equipment & processing capabilities

• 4 inch n- or p- typ silicon wafer, single or double-sided polished

- double side process and test equipment
- Automatic coating and developing cluster for double-side processing
- Projection mask aligner, projection photolithography
- Spray coating equipment

. . .

- partly 6 inch compatible
- up to 2000 detector wafer p.a.
- high ohmic (1 30 kOhmcm) STFZ or DOFZ
- CZ (>600 Ohmcm), epi (for example 50 Ohmcm) on CZ
- Thickness: (200 μm) ... 250 μm ... 285 μm ... 300 μm ... 500 μm ... (800 μm)

CiS Institut für Mikrosensorik gGmbH 2003

Oxydation Oxygen enrichment

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

LP - CVD SiO₂, SION, Si₃N₄ stress reduced Poly-silicon

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

IIIII

CiS Institut für Mikrosensorik gGmbH 2003

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

Roboter

18. - 20. May 2003

쁥

Improved conditions for

- wafer cleaning
- wet etching
- photoresist wet structuring

Improved qualtity of

- gases
- photoresist (less Na ions)
- DI water

CiS Institut für Mikrosensorik gGmbH 2003

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

pad - diode

CiS Institut für Mikrosensorik gGmbH 2003

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

Test structures details

CiS Institut für Mikrosensorik gGmbH 2003

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

Test wafer SDTW01-2

_			1.01		4. C	חח		6a	
			La	you	ເ: ວ	κυ	wa	ier	
		1				2			
	8	7	6		5	4	3		
9	10		11	12	13		14	15	= border chips, not usable
24	23	22	21	20	19	18	17	16	
		25	26	27	28	29			22 = pad-diode chips
38	37	36	35	34	33	32	31	30	
39	40		41	42	43		44	45	
	51	50	49		48	47	46		37 = pad-diode chips, first measureme
		52				53			
				flat					

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

SRD - test wafer program 2000 - 2002

	n/P,	n/P,	n/P,
	FZ <100>,	FZ <111>,	FZ <111>,
	1-6 kOhmcm	1-6 kOhmcm	4-7 kOhmcm
	(Wacker)	(Wacker)	(Topsil)
Standard	26 wafer	28 wafer	6 wafer
DOFZ 24h	22 wafer	22 wafer	
DOFZ 48h	18 wafer	18 wafer	
DOFZ 72h	24 wafer	24 wafer	12 wafer

Used technology: like ATLAS WEDGE W12

	highohmic	CZ+epi
	CZ	
	>600 Ohmcm	
	(Sumitomo)	
Standard	48 wafer	9 wafer

Next steps: - MCZ

- CZ+epi

- FZ <111>, 3-4 kOhmcm

2nd RD50 - Workshop on Radiation hard semiconductor devices

for very high luminosity collidors

Results of processingof SRD and oxygen enriched ATLAS detectors(> 250 wafer)(ca 900 wafer)

- We have recognized:
 - quality and yield of the DOFZ detectors fundamentally depends of
 - charge of the wafer delivery (manufacturer/distributor, ingot [region])
 - for example: since 2002 Wacker wafer have saled by Wafernet -> significant deterioration (for STFZ wafer it was far less important)
 - grinding and polishing of the wafers has also a basic influence
 - surface defects, metal contaminations by grinding and polishing pastes
 - the effects of different behavior of various wafer zones

(ca 3" center, outer zone)

this effect we have seen particularly at DOFZ wafers

- high ohmic CZ wafers from Sumitomo: two strongly different qualities
- Thesis: denuded zones play a important rule

in respect of wafer processing

=> defect engineering in various layers

could be conceivable, advisable

CiS Institut für Mikrosensorik gGmbH 2003

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

What CiS can offer for Rd50?

- Prozessing of wafers for R&D
 - HCZ/MCZ, STFZ, DOFZ.
 - oxygen enhancement by high temperature diffusion (1150C, N2, 16 - 72 hours; if necessary also longer temper times for R&D
 - double side prozessing, structuring of back side metalization (mesh)
- some additional services:
 - sawing, bonding (US, thermo compression, stud bumping), mouting & hausing
 - mask design, mask set (fabrication by ML&C Erfurt)
 - test structure design
- "bad" wafers of detector production, for instance ATLAS PIXEL and ATLAS WEDGE (if the ATLAS calloboration / CERN agrees):
 - 24 hour DOFZ pad-diodes, mini strip-detectors, test structres (gated-diodes,...) perhaps "one tile" - pixel wafer (n/P, <111>, 2 - 5 kOhmcm)

ATLAS Test structures

designed by MPI Halbleiterlabor Munich

CiS Institut für Mikrosensorik gGmbH 2003

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

gate controled diode:

kreisförmige Diode (∅=1mm), ganzflächig geöffnet und mit Metall bedeckt umgeben von 5 Metallringen auf Feldoxid und Nitrid

Gruppe: TEST_DO

ws: p+ - Diodengebiet \emptyset =1mm ganzflächig kontaktiert: Kontaktloch rt: \emptyset =1mm Metall: gn: \emptyset =1,01mm über der Diode und 5µm über A-Kante mit bias- p- Implamntation: \emptyset =1,004mm Passivierungsöffnung: \emptyset =0.99mm (5µm von A-Kante entfernt)

5 Metallringe auf 300nm Feldoxid und 50nm Nitdrid Breite der Ringe je 50μm, Abstand 5μm Passivierungsöffnung mittig und 40μm breit

BABY_DET_CIS

98 parallele Streifen mit integriertem bias-Widerstand (ge,am oberen Ende der Streifen) und Auslesekondensator analog W21-Detektor

- Länge der p+ -Gebiete 7.99mm, Breite 18µm,
- umlaufend um p+ -Streifen mit 0.1µm Abstand p-Bias-Implantation mit 2.7µm Breite
- Abstand der Streifen (p+ -Gebiete): 62µm
- Kontakt zu p+ je am oberen und unteren Ende der Streifen (Metall: 65x75µm² oben, 18x40µm² unten)
- Auslesekondensator Metall über p+ auf Implantationsoxid und Nitrid Länge 7,508mm, Breite 19μm (mit je 3 Pads, unten 2 und oben 1, Metall 69x213μm²):

Guard-Ring_Struktur wie W21-Detektor, die bias-Widerstände laufen gegen den bias-Ring, der, oben links und rechts neben den Pads der Auslesekondensatoren kontaktiert werden kann.

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

18. - 20. May 2003

CiS Institut für Mikrosensorik gGmbH 2003

TEST_MULTI_PURPOSE

Oben-Mitte: kreisförmige Dioden mit umlaufender Guardringdiode in unterschiedlichen Abständen (Detailbild-**A**) und MOS-Trasistoren (**B**)

Oben-rechts und Mitte/Mitte-rechts: 4-Draht-Messung p⁺ - Streifen 4,10,20,30 und 40μm Breite, 2-Draht-Messung bias-Streifen 5.2, 11.2, 21.2, 31.2 und 41.2μm, kreis-förmige Dioden mit umlaufender Guardringdiode und bias-Brücke (C), oben: Kammförmig Diode mit Metallabdeckung für die Untersuchung der Beeinflussung der Randeigenschaften der Diode durch eine Oberflächenladung auf dem Oxid (**D**)

Oben-links: Kammdiode ähnlich Oben-rechts Mitte-links: MOS-Strukturen (E) unten-links: Metall über p+ und bias-Impl auf Impl-Oxid ohne Nitrid

unten-rechts: Metall über p+ auf Impl-Oxid mit Nitrid unten-mitte: Metall und Metallring über

Substrat auf Feldoxid+Nitrid (oben) und mit Metallring mit kl. p+Gebiet zum absaugen der generierten Löcher (unten)

> von links nach rechts: Detailbild A, B, C

Detailbild D

Detailbild E:

oben links: Metall über bias-Implantation auf Feldoxid mit Metallring über Substrat auf Feldoxid+Nitrid

oben rechts: Metall über Substrat auf Feldoxid+Nitrid mit Metallring über Substrat auf Feldoxid+Nitrid **unten links:** Metall und Metallring über bias-Implantation auf Feldoxid

Metallring mit kl. p+-Gebiet

unten rechts: Metall über Substrat auf Feldoxid+Nitrid mit Metallring über Substrat auf Feldoxid+Nitrid (C???)

ts_most_p_csem

5 MOS-Transistoren mit unterschiedlichen Gatelängen

CiS Institut für Mikrosensorik gGmbH 2003

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

MOS_block

NNOS
MNOS + GUAND CONT
MOS + INPL RES

Image: Im

oben links/ unten rechts: Metall 1x1mm² und Metallring (Breite 60μm, Abstand 10μm) über Substrat auf Feldoxid + Nitrid

oben Mitte: Metall $1x1mm^2$ und Metallring (Breite $60\mu m$, Abstand $10\mu m$) über Substrat auf Feldoxid + Nitrid

Metallring , Metallring ist mit kl. p+ -Gebiet bebunden, um in tiefer Verarnung Minoritäten abzusaugen

oben rechts: Metall 1x1mm über bias-Implantation (nicht kontaktiert !) auf Feldoxid und Metallring auf Feldoxid+Nitrid: (Serienschaltung MOS und bias-Impl.-Diode) **unten links:** Metall 1x1mm und Metallring über bias-Implantation auf Feldoxid Metallring.

Metallring ist mit p-bias –Implantation verbunden

unten Mitte: Metall 1x1mm über Substrat auf Restfeldoxid (C im Feldoxid) und Metallring auf Feldoxid+Nitrid

MOS-Struktur: Metall (2.99x2.99mm²) über p+ - Gebiet auf Implantationsoxid + Nitrid

Metall ist ganzflächig geöffnet Das p+ - Gebiet ist unten-links kontaktierbar

2nd RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity collidors

RD50 additional remarks

- Common mask set vs. CiS projection lithography
- Technology key parameters may be coordinated:
 - implant dose
 - annealing parameters
 - process variations of lateral structures (distortion, undercutting, ...)

Our next R&D projects

- <u>Super Radiation Hard Silicon Detectors (Surad)</u>
 - wafer concept: DOFZ, CZ + epitaxial layers (perhaps variation of the epi-layer thickness resp. resistivity)
 - defect engineering
 - oxygen, carbon, hydrogen, ...
 - zone engineering (denuded zone engineering, bulk layers with various defect concentration [especially oxygen])
 - studies of precipitations: perhaps making of free zone of [O]-precipitations
 - optimalization of process parameters + processing steps vs. behavior
 - problem: epi-layer double-side devices
 - Monitoring wafer: various test resp monitoring structures:
 - radial distribution of the behavior of some electrical parameters
- Analysis by Hamburg University, MPI Halle, ?
- Microskopic analysis (microstructure also in bulk: HREM, ...) of wafers bevor and after various processing steps

CiS Institut für Mikrosensorik gGmbH 2003