Lithium ion irradiation of silicon diodes

A. Candelori¹, D. Bisello¹, M. Boscardin², D. Contarato³, G. F. Dalla Betta⁴,
E. Fretwurst³, A. Kaminski¹, G. Lindström³, A. Litovchenko¹, M. Lozano⁵,
M. Moll⁶, R. Rando¹, M. Ullán⁵, A. Schramm³, and J. Wyss⁷

¹Dipartimento di Fisica and INFN Sezione di Padova, Italy
 ²ITC-IRST, Divisione Microsistemi, Trento, Italy
 ³Institut für Experimentalphysik, Universität Hamburg, Germany
 ⁴Università di Trento, Dipartimento di Informatica e Telecomunicazioni, Italy
 ⁵Centro Nacional de Microelectrónica, Universidad de Barcelona, Spain
 ⁶CERN, Genève, Switzerland
 ⁷Facoltà di Ingegneria, Università di Cassino, Italy

- Motivation of the study
- 58 MeV Li ions in silicon
- Tested devices: -standard and oxygenated float zone silicon diodes -epitaxial silicon diodes
- Irradiation and experimental procedure

-depletion voltage

- Experimental results: -leakage current at full depletion -comparison of Li ions with protons
- Conclusions

• The next generation silicon detectors for future very high luminosity colliders or a possible LHC upgrade scenario will require radiation-hard semiconductor detectors up to fluences of 10¹⁶ 1-MeV equivalent neutrons/cm².

• These high fluences present strong constraints for prototype device testing because long irradiation times are required at the currently available proton irradiation facilities.

• A possible solution to overcome these time constraints is to irradiate devices with high energetic heavy ions, taking advantage of the large non-ionizing energy-loss (NIEL), which significantly increases with the atomic number of the impinging particles.

• This study presents the results of the first experiment on detector radiation hardness by making use of high energetic ions heavier than protons.

58 MeV Li ions in silicon

Range: Energy loss in 50 µm: Energy loss in 300 µm: NIEL : Hardness factor 49.1:

$400\;\mu m$

4.3 MeV
32.6 MeV
2.003×10⁻⁴ MeV/cm² × mg
27.3 times higher than 27 MeV protons (1.80)
84.7 times higher than 24 GeV protons (0.58)

Si recoil distribution:

27 MeV protons

58 MeV Li ions

Tested devices

Experiment: part I. Standard and oxygenated float zone silicon diodes

Manufacturer	Substrate	Resistivity	Thickness	Area	Label
		(kΩ×cm)	(µm)	(cm^2)	
CNM	standard <100>	4	280	0.25	CNM _{STD}
CNM	oxygenated (12h at 1150°C)) 4	280	0.25	CNMOXY
ST	standard <100>	2	300	0.25	ST _{STD}
ST	oxygenated (30h at 1200°C)	2	300	0.25	STOXY

Fluence: up to 5.19×10^{12} Li/cm² <==> 1.42×10^{14} 27-MeV protons/cm². RD48 range

Experiment: part II. Epitaxial silicon diodes						
Manufacturer	Substrate	Resistivity $(\Omega \times cm)$	Thickness (µm)	Area (cm ²)	Label	
CIS	Epitaxial on CZ silicon	50	50		CIS _{EPI}	
Fluence: up to 63.58×10 ¹² Li/cm ² <==>5.38 ×10 ¹⁵ 24-GeV protons/cm ² . RD50 range						

Irradiation and experimental procedure

• Standard and oxygenated float zone silicon diodes

- -Irradiation in single step with an ion flux of 2.5×10^9 ions/cm²×s
- -1 hour at room temperature after irradiation
- -storing at -20°C
- -1,10,100 kHz C-V and I-V measurements
- -Annealing at 80°C for 4 minutes
- -1,10,100 kHz C-V and I-V measurements
- Epitaxial silicon diodes
 - -Irradiation in single step with an ion flux of 2.5×10^9 ions/cm²×s
 - -1 week at room temperature
 - -storing at -20°C
 - -1,10,100 kHz C-V and I-V measurements
 - -Annealing at 80°C for 4 minutes
 - -1,10,100 kHz C-V and I-V measurements

The analysis of the experimental data has been performed by considering the 10 kHz C-V curves and by scaling the I-V curves at 20°C

Standard and oxygenated FZ diodes: 10 kHz C-V curves after irradiation

Space charge sign inversion (SCSI) after Li ion irradiation

Standard and oxygenated FZ diodes: N_{eff} after irradiation

Standard and oxygenated FZ diodes: N_{eff} after 4 min at 80°C

 $-|N_{eff}|$ ∝ β·Φ after SCSI -β is slightly lower for the oxygenated devices -ST_{OXY}: highest [O] and lowest β

Standard and oxygenated FZ diodes: J at V_{dep} (J_D) after irradiation

-Linear dependence of J_D on the Li ion fluence - α is independent from starting material and/or processing Standard and oxygenated FZ diodes: J at V_{dep} (J_D) after 4 min at 80°C

Experimental hardness factor: $H_{EXP} = \alpha(58 \text{ MeV Li})/\alpha(1 \text{ MeV neutrons})=45.08$ Theoretical hardness factor: $H_{TEO} = 49.11$ Difference of the theoretical-experimental values: $(H_{TEO}-H_{EXP})/H_{TEO}=8.2\%$

Standard and oxygenated FZ diodes: 27 MeV protons and 58 MeV Li

Diode	$\alpha_{27 \text{ MeV protons}}$	<u>α</u> 58 MeV Li ions	$\underline{\alpha}_{58 \text{ MeV Li ions}} / \underline{\alpha}_{27 \text{ MeV protons}}$
CNM_{STD}	$(8.48\pm0.06)\times10^{-17}$	$(204.9\pm3.9)\times10^{-17}$	24.2 ± 0.6
CNM_{OXY}	$(8.35\pm0.04)\times10^{-17}$	$(205.3\pm4.5)\times10^{-17}$	24.6±0.7
ST_{STD}	$(8.26\pm0.06)\times10^{-17}$	$(204.0\pm3.9)\times10^{-17}$	24.7 ± 0.6
ST _{OXY}	$(8.12\pm0.14)\times10^{-17}$	$(208.0\pm5.0)\times10^{-17}$	25.6±1.1
Diode	β _{27 MeV protons}	$\underline{\beta}_{58 \text{ MeV}}$ Li ions	$\underline{\beta}_{58 \text{ MeV Li ions}} / \underline{\beta}_{27 \text{ MeV protons}}$
CNM _{STD}	0.0243±0.0019	0.3735 ± 0.0306	15.4±2.5
CNM_{OXY}	0.0208 ± 0.0024	0.3366 ± 0.0359	16.2 ± 3.6
ST_{STD}	0.0286 ± 0.0030	0.3197 ± 0.0126	11.2 ± 1.6
ST _{OXY}	0.0170 ± 0.0019	0.2599 ± 0.0188	15.3 ± 2.8

-The ratios of the β and α values for 27 MeV protons and 58 MeV Li ions appear independent on starting material and/or processing

Epitaxial diodes: 10 kHz C-V curves after 4 min at 80°C

 V_{dep} slightly decreases for $\Phi \le 6.34 \times 10^{12}$ Li/cm² increases for $\Phi \ge 21.2 \times 10^{12}$ Li/cm²

Epitaxial diodes: $V_{dep}vs \Phi$ after 4 min at 80°C

-SCSI or positive space charge increase? Under investigation. -Quasi-flat V_{dep} behavior ($\Phi \le 6.34 \times 10^{12}$ Li/cm²) also confirmed by 24 GeV proton irradiation data from Hamburg group up to 1.3×10^{15} 24-GeV protons/cm² (1.54×10^{13} Li/cm²). Epitaxial diodes: J-V curves after 4 min at 80°C

-J at full depletion is in the flat part of the J-V curves apart from the highest fluence where a saturation of the J-V curve is not observed

-J_D presents a sub-linear trend, consequently α decreases.

- α at the lowest fluence (164±6×10⁻¹⁷ A/cm) is in agreement within 12% in the NIEL scaling hypothesis with the value measured by the Hamburg group after 24 GeV proton irradiation (α =(2.20±0.15)×10⁻¹⁷ A/cm) - α is lower for epitaxial diodes than for FZ silicon devices (effect already observed by RD48 collaboration).

Conclusions

• 58 MeV Li ion irradiation effects on float zone diodes (RD48 range): -very similar to protons:

-space charge sign inversion;

 $-\beta$ is lower for oxygenated devices;

- α is independent on starting material and/or processing;

-scaling of the irradiation time by a factor ≈ 45 :

-the experimental hardness factor (45.08) is within 8.2% the values expected from the NIEL scaling hypothesis;

-the ratio of the β and α parameters for 27 MeV protons and 58 MeV

Li ions appear independent on starting material and/or processing;

58 MeV Li ion irradiation effects on epitaxial diodes (RD50 range): -non-monotonic trend of the V_{dep} variation, (the quasi-flat behavior of V_{dep} is in agreement with proton irradiation data); -sub-linear trend of the diode current density increase at full depletion, (α at the lowest fluence is in agreement with the proton irradiation data).

Radiation hardness by heavy ions: a new research topic!

- \bullet Investigation of the V_{dep} and $J_{\rm D}$ characteristics for long annealing times up to 2048 minutes
- Investigation of the microscopic defects induced by Li ions by DLTS and TSC.
- Investigation of the charge collection efficiency
- Comparison of the degradation induced by 58 MeV Li ions and protons extending the fluence range.
- Irradiation of diodes manufactured on CZ silicon