Radiation hardness of Czochralski silicon studied by low energy protons

J. Härkönen, E. Tuovinen, P. Luukka, K. Lassila-Perini, P. Mehtälä, S. Nummela, J. Nysten, E. Tuominen, A. Zibellini Helsinki Institute of Physics, Helsinki, Finland

> Z. Li Brookhaven National Laboratory, Upton, USA

E. Fretwurst, G. Lindstroem, J. Stahl, F. Hönniger Institute for Experimental Physics, University of Hamburg, Germany

> V. Eremin, E. Verbitskaya, A. Ivanov Ioffe PTI, St. Petersburg, Russia

P. Heikkilä, V. Ovchinnikov Microelectronics Center, Helsinki University of Technology, Helsinki, Finland

M. Yli-Koski Electron Physics Laboratory, Helsinki University of Technology, Helsinki, Finland

> P. Laitinen, I. Riihimäki, A. Virtanen Accelerator Laboratory, University of Jyväskylä, Finland

Outline

*Background *Evolution of depletion voltage in proton irradiation *Leakage current *Space Charge Sign Inversion studied by TCT *Defect analysis by DLTS *Conclusions

Background

- * High resistivity (>1000 Ω cm) Cz-Si now available (Okmetic, Sitix) * Promising material because of high oxygen concentration.
- * This far by (CiS/HH, BNL, Helsinki/HIP, MEC/HUT) :
 - Test diodes and full size strip detectors have been processed.
 - Detectors proved to be operational by muon test beam run at H2 area of CERN.
 - Diodes irradiated with γ -rays, neutrons, pions, high and low energy protons.
 - Detectors irradiated with 10 MeV protons.

Depletion voltage evolution I (Cz)

Depletion voltage evolution II (Fz)

Depletion voltage evolution III (DOF Fz)

Leakage current

TCT analysis

Proton energy (MeV)	1 MeV/n eq. Dose (cm ⁻²)	Full depletion voltage (V)	SCSI	SC sign	Double peak in TCT signal
10	1,3*10 ¹⁴	215	No	+	Weak
10	2,6*10 ¹⁴	134	Yes	-	Clear
10	5,2*10 ¹⁴	260	Yes	-	Clear
20	8,1*10 ¹³	225	No	+	No
20	1,6*10 ¹⁴	213	No	+	Weak
20	3,2*10 ¹⁴	188	Yes	-	Clear

TCT analysis of Cz-Si detectors irradiated with 10 and 20 MeV protons. The diodes have been annealed at 80°C for 30 minutes before the measurements.

DLTS analysis

DLTS-spectra 322_H13_CZ

Fp (cm-2)	V-0		VV-			Ci-Oi			
	CZ	FZ	DOF	CZ	FZ	DOF	CZ	FZ	DOF
0	0	0	0	0	0	0	0	0	0
1.00E+10	1.80E+10	1.80E+10	1.70E+10	1.90E+10	1.10E+10	1.50E+10	3.40E+10	3.00E+10	3.20E+10
3.00E+10	3.50E+10	5.00E+10	8.88E+10	3.00E+10	2.85E+10	7.00E+10	6.50E+10	6.60E+10	2.00E+11

Conclusions

*Cz-Si is less prone to Vdepl changes than Fz-Si and DOF Fz-Si when irradiated with 10,20 and 30 MeV protons

*Leakage current seem to correlate with O concentration Fz>DOF>Cz with proton energies used in this study

*Space Charge Sign Inversion observed by TCT *SCSI takes place at about 2*10¹⁴ cm⁻² (1 MeV/n eq.) dose. That corresponds >10 years in LHC experiments