Improved Radiation Tolerance of silicon detectors for HEP applications; results from the CiS-HH project

G. Lindtstroem¹, D. Contarato¹, E.Fretwurst¹, J. Harkonen⁴, F. Hoenniger¹, G.Kramberger³, I.Pintilie^{1,2}, R. Roeder⁵, A. Schramm¹, J. Stahl¹

> ¹Institute for Experimental Physics, University of Hamburg ²National Institute for Material Physics, Bucharest ³DESY, Hamburg ⁴Helsinki Institute of Physics, University of Helsinki ⁵CiS Institute for Microsensors, Erfurt, Germany

Motivation

- Material under investigation
- Material and device characterization
- Recent results on hadron damage
- Further developments

MOTIVATION

Defect engineering strategy For pixel devices near to the IP thin layers (low X₀) are needed **Material Type** Thin active layers: **Material Characterization Detector Design and Process** High doping at moderate bias voltage possible Shift of type inversion to much **Irradiation Experiments** higher fluences expected **Defect Characterization Macroscopic Parameter** Alternative Si-material: **Annealing Experiments Defect Kinetic Modeling EPI-silicon** with thickness: 50 µm **Device Simulation** resistivity: 50 Ωcm **New Material Parameter**

MATERIAL UNDER INVESTIGATION

FZ-Silicon wafers:			
Wacker Siltronic	<111>, n/P, 2-5 kΩcm, 285±10 µm, double sided polished		
process CiS only 8 different types	standard Oxidation and DOFZ: 24,48,72 h/1150C <100>, n/P, 1-6 kΩcm, 280±15 μm, double sided polished standard Oxidation and DOFZ: 24,48,72 h/1150C		
		Wacker Siltronic	<111>, n/P, 4-8 kΩcm, 300 μm, single sided polished
		process CiS only	standard Oxidation and DOFZ: 72 h/1150C
SINTEF/CiS	<111>, n/P, 4-8 kΩcm, 300 μm, single sided polished		
	Oxide+DOFZ at SINTEF: standard Oxidation and DOFZ: 72 h/1150C		
4 different types	All other processing at CiS		
Cz-Silicon wafers:	<100>, n/P, > 600 Ω cm, 280 ±15 µm, double sided polished. CiS process		
Sumitomo-Sitix	ITME: TD-kill and TD-generation		
2 different types			
EPI-Silicon wafers:	<111>, n/P, 50 Qcm, 50 µm on 300 µm Cz-substrate, CiS process		

<u>EPI-Silicon wafers:</u> <111>, n/P, 50 Ωcm, 50 µm on 300 µm Cz-substrate, CiS process ITME

CHARACTERIZATION OF EPI - SAMPLES

- <ρ> between 0-40 μm: 54.8 ± 2.1 Ωcm
- Thickness of epi-layer: 49.5 ± 1.6 μm
- <ρ> after device process:
 62.9 ± 2.8 Ωcm

- Oxygen diffusion from Cz-substrate into epi-layer
 <[O]> ≈ 6.2×10¹⁶ cm⁻³
- Carbon concentration at detection limit
 [C] ≈ 5.7×10¹⁵ cm⁻³

IRRADIATION EXPERIMENTS

- 24 GeV/c protons, PS-CERN up to 1.3*1015 cm-2
- 10 MeV protons, Jyvaskyla +Helsinki up to 3*1014 cm-2
- TRIGA reactor neutrons, Ljubljana up to 8*1015 cm-2
- 58 MeV Li ions, Legnaro/Padova →see talk presented by A. Candelori

COMPARISON STFZ-, DOFZ-, Cz- and EPI-SI 24 GeV/c PROTONS

CERN-SCENARIO MEASUREMENTS (4min/80°C treatment after each step)

EPI-silicon:

- No type inversion
- Small change in depletion voltage up to 1.3·10¹⁵ p/cm²
- No difference in reverse current between STFZ, DOFZ & Cz
- Small reduction for EPI-silicon at high fluences

ANNEALING EXPERIMENTS AT ELEVATED TEMPERATURES

$$\Delta N_{eff} = N_{A}(t,T) + N_{C} + N_{YI}(t,T) + N_{Y2}(t,T)$$

 N_A : beneficial annealing N_C : stable damage N_{YL2} : reverse annealing has 2 components

- First component N_{Y1} assumed to be first order process
- Second component N_{Y2} assumed to be second order process

COMPARISON BETWEEN 80°C and 60°C ANNEALING

 Time compression factor 80°C/60°C in agreement with activation energy of E_a=1.33 eV

STABLE DAMAGE AFTER 24 GeV/c PROTON IRRADIATION

- Irradiation at fixed fluences, Individual annealing at 80°C
- Stable damage can be described by one component:

 $N_{C} = N_{C0}^{*} \{1 - exp(-c^{*}\Phi)\}$

so called "donor removal" with c = 1.48*10⁻¹⁵ cm² NC0*c = 0.15 cm⁻¹, (Moll: 0.075 cm⁻¹)

REVERSE ANNEALING AMPLITUDES 24 GeV/c protons

N_{Y1} component

N_{Y2} component

- N_{Y1} component: introduction rate $g_{Y1} \approx 2*10^{-2}$ cm⁻¹ (Moll: 5.2*10⁻²), $\tau_{Y1} \approx 10 100$ min (Moll: 90 min)
- N_{Y2} component: saturation character, initial introduction rate $g_{Y2,0} \approx 8.9 \times 10^{-2} \text{ cm}^{-1}$

REVERSE ANNEALING AMPLITUDE N_Y 24 GeV/c protons

• Sum of both components is proportional to proton fluence, introdution rate $g_V \approx 8.6 \times 10^{-2} \text{ cm}^{-1}$

REVERSE ANNEALING TIME CONSTANT AT 80°C after 24 GeV/c proton irradiation

- Long time constant of second reverse annealing component decreases with increasing fluence
 - \Rightarrow second order process
- The fit results in:
 - $\tau_{Y2}^{*}N_{Y2} = 3.37^{*}10^{17} \text{ min/cm}^{3}$

CCE VERSUS 24 GeV/c PROTON FLUENCE

Measurements performed before annealing

Range of α -particles

 $\beta = 7.5*10^{-17} \text{ cm}^2$

Applied $V_{bias} = 150 V$

corresponds to

E = 30 kV/cm

R ≈ 20-25 µm

EPI-SILICON – 10 MeV PROTONS

Development of depletion voltage and reverse current with fluence Measurements performed before annealing

- No type inversion
- Small change in depletion voltage up to 3·10¹⁴ p/cm²
- Reverse current linear with fluence

CCE VERSUS 10 MeV PROTON FLUENCE

Measurements performed before annealing

- Calculation of CCE according to trapping data of G. Kramberger and assuming a hardness factor of 2.5 for 10 MeV protons
- β-value compared to 24 GeV/c protons:

 β_{10MeV} / β_{24GeV} = 3.2

EPI-SILICON – REACTOR NEUTRONS Development of depletion voltage and reverse current with fluence Measurements before annealing

- Type inversion at about 2*10¹⁵ cm⁻²,
- Depletion voltage still low at 8*10¹⁵ cm⁻² (V_{dep} = 96 V)
- **Reverse current linear with fluence**, α-value smaller than expected

CCE VERSUS BIAS VOLTAGE AFTER NEUTRON DAMGE

- Strong voltage dependence at high fluences
- Strong CCE degradation at high fluences

CCE VERSUS NEUTRON FLUENCE

FURTHER DEVELOPMENTS

- <u>Detailed studies on EPI-silicon</u> Understanding of radiation induced generation of shallow donors (type of TD's) Understanding of annealing behavior at elevated temperatures Systematic investigation on trapping at different temperatures Role of substrate: possible diffusion of defects from epi-layer into substrate or vice versa ? DLTS- and TSC-studies started
- Irradiation experiments

up to 10¹⁶ protons/cm² planned for July/October 2003 (PS-CERN)
✓ low energy electrons (15 MeV, Oslo/Stockholm)
started: high energy electrons (900 MeV, Trieste)
✓ high energy neutrons (30-60 MeV, Louvain)
✓ Heavy ions up to 10¹⁶ cm⁻² 1MeV neutron equivalent (58 MeV Li, Legnaro)

