Reverse annealing studies on standard diodes irradiated with 34 MeV proton beam.

D. Creanza, M. Depalma, N. Manna, V. Radicci

(Bari University and INFN of Bari, Italy)

2nd RD50 Workshop CERN, 18-20 May 2002

Outline

- Structures description;
- irradiation conditions;
- measurements of diode leakage current \rightarrow k factor estimation;
- measurements of depletion voltage as a function of fluence and annealing time \rightarrow annealing parameters;
- study of Bistable effect on diode leakage current and depletion voltage → time constant;
- conclusions

Structures description – Irradiation

Characterisation before and after irradiation of:

• Diodes: p+/n

0.24*0.24 cm² 300 µm thick

• Baby detectors: 128 strips p+

3.22 cm long - 61 µm pitch

Built on two different kind of standard substrates:

 Low resistivity: 1.5 -2 KΩcm Crystal orientation <100>
 High resistivity : 6 -10 KΩcm Crystal orientation <111>
 HR <111>

Irradiated with

• <u>**34 MeV protons</u>**, at **4** different fluences, up to 10¹⁴ pcm⁻², at the Cyclotron of the Research Centre of Karlsruhe **FZK** (Germany)</u>

Characterisation of the samples (*)

Before Irradiation C/V and I/V on all samples.

After 34 MeV proton irradiation

- diode <u>leakage current</u>
- diode <u>depletion voltage</u> vs. Φ^{N}
- ΔN_{eff} vs. annealing time
- V_{dep} and I_{leak} vs. time after heating 80°C $\rightarrow \tau$

 $\rightarrow \Phi^{N} \rightarrow k$ $\rightarrow \beta$ $\rightarrow ann. parameters$ $\rightarrow -$

(*) All the measurements of I/V and C/V were performed on diodes with guard ring to 0V

Measurements

After 34 MeV proton irradiation the structures were kept at $0^{\circ}C$;

Measurements performed:

• *during* 10 days of annealing at $T_a = 22 \pm 1^{\circ}C$

After benefical annealing the structures were kept for ~ 1y at $0^{\circ}C$;

Measurements performed:

- *during* 95 hours of annealing at $T_a = 60$ and $80^{\circ}C$
- *during* 98 hours of annealing at $T_a = 120^{\circ}C$

All the measurements were performed at $T_m = 22 \pm 1 \ ^0C \rightarrow T = 21 \ ^0C$

$$\Delta I = \alpha \left(t, T_a \right) \cdot \Phi^N \cdot V$$

$$\alpha^{short}(t,T_a) = \alpha_{\infty} \sum_{i} \frac{b_i}{b_{\infty}} \cdot e^{\left(-\frac{t}{\tau_i(T_a)}\right)} (*)$$

$$\alpha^{long}(t) = \alpha_I \cdot e^{-\frac{t}{\tau_I}} + \alpha_0 - \beta \cdot \ln\left(\frac{t}{t_0}\right)^{(*)}$$

We can determine the hardness factor $\rightarrow k = \Phi^N / \Phi^P$

*) Standard parameterisation for $\alpha(t, \Phi)$ and parameters value from M. Moll PhD thesis

Diode leakage current vs. annealing time at 20°C

HR<111>

24 GeV/c proton irradiation

The effective doping concentration N_{eff}

$$N_{eff}^{\Phi} = N_{eff}^{0} - N_{A}(\Phi, t(T_{a})) - N_{C}(\Phi) - N_{Y}(\Phi, t(T_{a}))$$

Short term annealing: $N_A = g_A \Phi \cdot e^{-t/\tau_A}$

Stable damage component:
$$N_C = N_{C0} (1 - e^{-C\Phi}) + g_C \cdot \Phi$$

 $N_Y = g_Y \Phi \cdot (1 - e^{-t/\tau_Y})$ first order process
Long term annealing: $N_Y = g_Y \Phi \cdot (1 - \frac{1}{1 + t/\tau_Y})$ second order process: with τ_Y ind. on Φ
 $N_Y = g_Y \Phi \cdot (1 - \frac{1}{1 + k_2 g_Y \Phi t})$ second order process: with $\tau_Y \propto 1/\Phi$

N_{eff} vs. Φ :

For a fixed annealing time t at the minimum of the ann. curve: $\tau_A \ll t \ll \tau_Y$

$$N_{eff}^{\Phi} = N_{eff}^{0} - N_{C0} (1 - e^{-C\Phi}) - \beta \cdot \Phi$$

• **Proton** irradiation: $N_{C0} \cong N_{eff}^{0}$ \leftarrow *Complete donor removal*

$$N_{eff}^{\Phi} = N_{eff}^{0} e^{-C\Phi} - \beta \cdot \Phi \xrightarrow{High\Phi} - \beta \cdot \Phi \xrightarrow{} \beta \approx g_{C}$$

For a fixed annealing time t at the maximum of the ann. curve: $t \gg \tau_y$

$$N_{eff}^{\Phi} = N_{eff}^{0} e^{-C\Phi} - (g_C + g_Y) \cdot \Phi \xrightarrow{High\Phi} - \beta' \cdot \Phi$$

$$\beta' = g_C + g_Y$$

V_{dep} vs. fluence

FIT- second order process with $\tau_v \propto 1/\Phi$

 $\overline{g}_{Y} = 7.8 \cdot 10^{-2} \, cm^{-1}$ $\overline{g}_{C} = 1.3 \cdot 10^{-2} \, cm^{-1}$ $(g_{C}(\Phi_{1}) = 4.5 \cdot 10^{-2} \, cm^{-1})$

Similar to the 24 GeV values

 $\overline{g}_{Y} = 8.2 \cdot 10^{-2} cm^{-1}$ $\overline{g}_{C} = 1.3 \cdot 10^{-2} cm^{-1}$

I_{leak} vs. relaxation time HR<111> Φ_4

The measurement of leakage current vs time $(V_{bias}=400V)$ starts immediately after the heating at 80°C.

The measurement of leakage current vs time $(V_{bias}=400V)$ starts after 24 hours from the heating.

I_{leak} vs. relaxation time HR <111>

I_{leak} vs. relaxation time LR <100>

 $\tau = 12 \cdot 10^3 s$ 3.3 hours

V_{dep} vs. relaxation time HR <111>

$$\tau = 11 \cdot 10^3 s$$
 \longrightarrow 3 hours

V_{dep} vs. relaxation time LR <100>

$$\tau = 13 \cdot 10^3 s$$
 3.5 hours

Conclusions

• As expected, leakage current doesn't depend on the substrate resistivity and orientation.

• The measurement of I_{leak} vs. annealing time allows a good estimation of Φ^N and a determination of the k factors both for 34 MeV and for 24 GeV/c protons. We have extracted:

k=1.3±0.3 for 34 MeV proton irradiation \rightarrow less than the theoretical value of (**k=0.63±0.07** for 24 GeV/c proton irradiation) kth ~ 2 obtained from displacement damage function (NIEL hypothesis)

• As for high energy protons, also for 34 MeV proton irradiation N_{eff}^{Φ} is characterized by a **complete donor removal.**

• The **annealing parameters** were extracted for 34 MeV proton irradiation after the complete relaxation of the bistable defects, using the II order - fluence depending- parameterisation.

• Both current and depletion voltage relaxation time constants have been estimated for the full samples heated at 80^oC and $\tau_{rel} < 3.5$ hours.

FIT- second order process with τ_y const.

