Silicon carbide: electronic levels associated to irradiation

A.Cavallini

INFM and Dipartimento di Fisica, Universitá di Bologna, Italy

Research group

- **Prof. Anna Cavallini** ٠
- **Dr. Beatrice Fraboni** ٠
- **Dr. Laura Polenta** ٠
- Mr. Antonio Castaldini ٠

HEAD of the Group

PhD, Researcher **PhD**, **Post-Doc Researcher Technical Manager**

http://www.df.unibo.it/semiconductors

Collaborations activated in the framework of detectors study

- C.Canali, F.Nava (University of Modena and Reggio Emilia Italy)
- **P.Siffert (EURORAD Strasbourg- France)**
- F.Pirri, F.Giorgis (Politecnico di Torino Italy)

Characterization techniques

Detection and characterization of electrically active defects

- Deep Level Transient Spectroscopy:concentration, energy \bullet level and capture cross section of electrically active defects
- *Photoconductivity*: energy level corresponding to transitions deep level-to band (useful in wide gap materials)

Analysis of electric field distribution across detectors

- SP (Surface Potential): measurement of electrostatic potential on the cleaved surface of the detector section
- **OBIC** (Optical Beam Induced Current): photoconductivity profiles across the detector

Applications

Defective state analyses to predict trapping effects

Electric field distribution to correlate with charge collection efficiency

>Analysis of compensation mechanisms acting in semiconductors

>Irradiation effects (radiation hardness)

A.Cavallini

Electric field distribution

Silicon p-i-n detectors

[A.Castaldini, A. Cavallini, L. Polenta, C. Canali, and F. Nava, **J. Appl. Phys. 92,** 2013 (2002)] [A.Castaldini, A.Cavallini, L.Polenta, F.Nava and C.Canali, **Nucl.Instrum & Meth. A 476** (2002) 550]

Electric field distribution

SI GaAs detectors Surface Potential and OBIC results

[A.Castaldini, A.Cavallini, L.Polenta, C.Canali and F.Nava, Nucl. Instr. & Meth. in Phys. Res.A. 426(1999), 192]
[A.Castaldini, A.Cavallini, L.Polenta, C.Canali, C.del Papa, F.Nava, Phys.Rev. B56 (1997) 9201]
[ACastaldini, A. Cavallini, L. Polenta, C. Canali, and F. Nava *IEEE SIMC-X* (1999) p.153-157]

Compensation mechanisms

II-VI detectors

Delicate balance between shallow and deep donors and acceptors

Irradiation effects, defect detection 4H-SiC detectors

Irradiation characteristics

Diode	ion	Energy (MeV)	Fluence (cm^{-2})	Schottky
A1	proton	6.5	10 ¹²	Ti + 400 C°
A2	proton	6.5	1011	Ti + 400 C°
A3	proton	6.5	3.2 10 ¹³	Ti + 400 C°
A4	not	-	-	Ti + 400 C°
A5	not	-	-	Ti + 400 C°
C1	proton	6.5	3.2 10 ¹³	Ni
C2	alfa	12	3.2 10 ¹³	Ni
C3	proton	6.5	6.4 10 ¹³	Ni
C4	alfa	12	6.4 10 ¹³	Ni

10⁻¹¹

-12

-14

-10

-8

-6

-2

-4

bias (V)

0

1

2

Ti contacts 10⁰ 10⁻¹ 700 K 10⁻² 10⁻³ · Proton 6.5 MeV 10⁻⁴ J (A cm⁻²) ר ⁵ 10 10⁻⁶ -10⁻⁷ 300 K Fluence cm⁻² 10⁻⁸ A4 not A2 10¹¹ 10⁻⁹ A1 10¹² 10⁻¹⁰ A3 3.2 10¹³

Arrhenius plot of the reverse current at high temperature proton irradiated diodes

Concluding Remarks

- proton irradiation only slightly changes the electrical properties of 4H-SiC Schottky diodes
- we detected 2 deep levels in as-prepared devices
- proton irradiation induces 5 levels, the density of which increases with fluence
- these deep levels are reasonably related to impurity-intrinsic defect complexes

