Divacancy-Oxygen Model in Si– fake or fact?

I. Pintilie^{a),b)}, E. Fretwurst^{b)}, G. Lindström^{b)} and J. Stahl^{b)} & Z. Li^{c)}

^{a)}National Institute of Materials Physics, Bucharest-Magurele, P.O.Box MG-7, Romania

^{b)}Institute for Experimental Physics, Hamburg University, D-22761, Germany

^{c)} Brookhaven National Laboratory, USA

Evidence for identification of V₂O complex

- 1976 the V₂O (**neutral charge state**) was detected by EPR and Photo-EPR studies in CZ Si after heavy electron irradiation (Lee and Corbett)
- Induced by irradiation VO+V
 [V₂O] ~ 10% [O] !
- *Thermally stable up to 300° C in CZ silicon* (up to 25% increase of its concentration during the isochronal annealing up to 300° C)
- the increase in its concentration during the heat treatment up to $300^{\circ}C$ is believed to be due to (V_2+O) reaction
- *IR absorbtion* 833.4 cm⁻¹ band found to increase upon annihilation of divacancies at 250-300 C and it is atributed to V₂O complex (J.L.Lindström et al, Physica B, 273, 291, 1999)

• *Ionization energy* Ec-0.5±0.05 eV

V₂O formation (theoretical calculations*)

1) $V+VO \rightarrow V_2O$ $E_b = 1.4 \text{ eV}$ 2) $VV+O \rightarrow V_2O$ $E_b = 0.5 \text{ eV}$

 \Rightarrow if all V, VV and VO are available (e.g. during irradiation) then reaction 1) is with 0.9 eV more favorable \Rightarrow reaction 2) has much higher probability to harmon (in absonce of V) at high

⇒ reaction 2) has much higher probability to happen (in absence of V) at high temperatures (> 200 C)

*V₂O – two acceptor levels deeper than VO **AIMPRO calculations suport three energy levels for V₂O (=/-;-/0,0/+)

```
*Pesola et al, PRB 60, 11449, (1999)
** R. Jones – 1st RD50 workshop
```

 $E_{f} = 5.5 \text{ eV}$

V₂O Defect Kinetics Model – as explanation for damage effects (B. C. MacEvoy et al)

V+O \rightarrow VO first order defect V+VO \rightarrow V₂O, second order defect

List A - primary reactions (in the PKA cascade)

I reactions	V reactions	C _i reactions
$I + V \rightarrow Si$	$V + V \rightarrow V_2$	*****

List B - diffusion reactions (outside the cluster)

I reactions	V reactions	C _i reactions
$I + C_s \rightarrow C_i$	$V + V \rightarrow V_2$	$C_i + C_s \rightarrow CC$
	$V + V_2 \rightarrow V_3$	$C_i + O \rightarrow CO$
$I + CC \rightarrow CCI$	$V + O \rightarrow VO$	20
I + CCI → CCII	$V + VO \rightarrow V_2O$	3.0 VO
I + CO → COI	$V + P \rightarrow VP$	^{¬¬} ^{2.5} ····· V ₂ O
I + COI → COII		
I + VO → O		$\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
$I + V_2 \rightarrow V$		₽ 0.5
$I + VP \rightarrow P$		0.0
		0 50 100 150 200
		⁶⁰ Co gamma dose (Mrad)
		(a)

V₂O - Model Predictions

- V₂O defect can be responsable for radiation damage effects
- *Beneficial effect of Oxygen enrichment* a high [O] would inhibit, via unfavorable competition with the formation of A-center (V-O defect $E_f^* = 3.7 \text{ eV}$), the formation of V₂O defect ($E_f^* = 5.5 \text{ eV}$).
- * Pesola et al, PRB 60, 11449, (1999)

Candidates for the V₂O complex

<u>I center*</u> – induced by irradiation

- Amphoteric nature donor and acceptor states
 I ^{+/0} (E_V+0.23eV)
 I ^{-/0} (E_C-0.54eV)
- Quadratic dose dependence u to 400 Mrad
- Evidence for forming via VO center
- Responsable for the damage after γ irradiation
- Thermal stable up to 325°C in FZ silicon

$\frac{X \text{ center}^{**}}{annealing in DOFZ silicon}$

- Two acceptor like levels $X^{=/-}$ (E_C-0. 23 eV), $X^{-/0}$ (E_C-0.46eV)
- No data about dose dependence
- Evidence for forming via VV center
- No significant influence to the device properties
- Thermal stable up to 325°C in DOFZ

*I. Pintilie et al, APL 81, 165, (2002), APL 82, 2169, (2003), 2nd RD50 workshop

**E.V. Monachov et al, PRB 65, 233207, (2002), 2nd RD50 workshop

Experimental results

• <u>Material</u>:

- -Standard float zone (STFZ) and oxygenated (72 h at 1150 C) float-zone (DOFZ)
- Initial doping concentration: $STFZ 8x10^{11} \text{ cm}^{-3}$; $DOFZ 1.2x10^{12} \text{ cm}^{-3}$
- Wacker Si <111> , high resistivity (3-4 k Ω cm)
- p^+nn^+ Si diodes, processed by CiS/Erfurt Germany

⁶⁰Co gamma irradiation:

- $Co^{60} \gamma$ -source at BNL, dose range 10 to 300 Mrad

- <u>Measurements:</u>
- C-V, I-V, at RT
- Deep Level Transient Fourier Spectroscopy DLTFS
- applied on 4 Mrad irradiated samples
- Thermally Stimulated Current
- applied on high irradiated samples (from 96 to 500 Mrad)

I center

1) Single acceptor state of I center: both -/0 & 0/- transitions (DLTS&TSC)

I-/0: $E_a = E_c - 0.545 \text{ eV}$, $\sigma_n = (1-3) \times 10^{-15} \text{ cm}^2$ I^{0/-}: $E_a = E_v + 0.58 \text{ eV}$, $\sigma_p = (8-10)\times 10^{-14} \text{ cm}^2$ Due to its steady state occupancy <15% [I] can be detected through e-emission >85% [I] can be detected through h-emission 2) Donor state of I center: +/0 transition I+/0: $E_a = E_v + 0.23 \text{ eV}(\pm 0.01)$, $\sigma_p = (0.9-3)\times 10^{-14} \text{ cm}^2$

I center – dose dependence

Almost quadratic dose depence
 ⇒ evidence for formation via two
 primary induced defects (one is VO)
 Largely suppressed in oxygen rich
 material

I center & device performance

I center - responsable for:

- type inversion in STFZ material
- increase of the leakage current in both STFZ&DOFZ silicon

I center – thermal stability

Isochronal annealing

Stable up to 325 °C

X center – formed in DOFZ silicon during 250°C annealing

When X starts to anneal out a deeper level (possible I center) starts to form

The leakage current in DOFZ continue to increase also after X centers start to anneal out

 \Rightarrow Deeper centers form

Annealing of X center – forming of I complex ?

Close to some conclusions

- I & X centers both are oxygen related and stable up to 325° C
- During X annealing I may form
- X center: fomed in oxygen rich material via VV annealing is it another configuration of VV prior to form V_2O , V_2O or V_2O_2 ? in any case will not explain the observed damage effects

Considering also the changes in the concentration of oxygen related much shallower levels \Rightarrow oxyen dimers might be involved in formation of X centers

• I center: second order defect formed via VO - is it V_2O or V_2O_2 ?

1) I: V+VO \Rightarrow V₂O V+VO₂ \Rightarrow VO₂ V+VO₂ \Rightarrow V₂O₂

 V_2O should form in higher concentration than V_2O_2 (higher V^\prime introduction rate and lower binding energy)

Conclusions

• Most likely I center is V_2O and X center is another VV configuration or $V_2O_2 \Rightarrow$ experimental confirmation the V_2O model!

• Less probable (but not impossible) – X is V_2O and I center is $V_2O_2 \Rightarrow$ the " V_2O model" should change to " V_2O_2 model"