

Evidence for identification of divacancy oxygen center in high purity oxygenated Si

G.Alfieri*, E.V.Monakhov*, B.S.Avset**, B.G.Svensson*

*Department of Physics, Physical Electronics, University of Oslo,P.O. Box 1048 Blindern, N-0316 Oslo,Norway

**SINTEF,Electronics and Cybernetics,PO Box 124 Blindern,N-0314 Oslo,Norway

- ✓ Experimental details
- samples characteristics
- ✓ Results and discussion
- SIMS data*
- DLTS data

✓ Conclusion

*Performed at SINTEF

3 p⁺-n⁻-n⁺ diodes were made using high-resistivity high purity FZ-Si

Sample	Doping	Oxidation process	Oxygenation process
Α	5x10 ¹² P/cm ³	21h dry oxidation at 1200°C	80h in N ₂ at 1150°C
В	4x10 ¹² P/cm ³	21 h dry oxydation at 1200°C	
С	3x10 ¹² P/cm ³	3.7h and wet oxidation at 1100°C	

✓The diodes were irradiated at RT

✓15-MeV electrons beam

✓ Dose of 4x10¹² cm⁻²

E.V. Monakhov, B.S. Avset, A. Hallén and B.G. Svensson, Phys. Rev. B 65, 233207 (2002)

✓7-MeV protons irradiated FZ-Si

✓ Some wafers received oxygenation treatment ([O]~10¹⁷cm⁻³)

SIMS data for sample A,B,C

DLTS spectrum of Sample A

DLTS spectrum of Sample B

DLTS spectrum of Sample C

- Both in proton and electron irradiated samples the same results have been found.
- The results of the annealing study show that the transformation of V₂ into X occurs at a rate that is directly correlated with oxygen content.
- This observation supports our previous tentative identification of X as V₂O which is formed through the interaction of migrating V₂ with an interstitial oxygen:V₂+O_i \rightarrow V₂O

aknowledgments

Financial support from:

-the Norwegian Research Council

(NFR – Strategic programs on microtechnology and materials science, FUNMAT)

and

-the Nordic Research Training Academy (NorFA)

is gratefully acknowledged.