Radiation damage in *p*-type boron doped Si

James Adey, R. Jones

P. R. Briddon

2nd RD50 Workshop

18-20 May 2003

• Motivation and Method

- Motivation and Method
- Boron Interstitial defects

- Motivation and Method
- Boron Interstitial defects
- Boron-oxygen complex

- Motivation and Method
- Boron Interstitial defects
- Boron-oxygen complex
- Boron-carbon complex

- Motivation and Method
- Boron Interstitial defects
- Boron-oxygen complex
- Boron-carbon complex
- Boron-hydrogen complex

- Motivation and Method
- Boron Interstitial defects
- Boron-oxygen complex
- Boron-carbon complex
- Boron-hydrogen complex
- Summary and conclusions

• Motivation:

• Motivation:

- \star Previous detectors use *n*-type Si
- * The formation of deep levels limits their lifetime (V₂O)
- \star Would these problems be encountered in *p*-type Si?

• Motivation:

- \star Previous detectors use *n*-type Si
- * The formation of deep levels limits their lifetime (V₂O)
- \star Would these problems be encountered in *p*-type Si?

• Method:

• Motivation:

- \star Previous detectors use n-type Si
- * The formation of deep levels limits their lifetime (V₂O)
- \star Would these problems be encountered in p-type Si?

• Method:

- Boron interstitial defects and boron-impurity complexes investigated
- Use DFT (AIMPRO) to study stability and electrical properties
- ★ Comparison with observed centres

p-type Vs. n-type

• Many levels in *n*-type (left)

Many levels in *n*-type (left)
 * Deep level of V₂O acts a recombination centre

- Many levels in *n*-type (left)
 ★ Deep level of V₂O acts a recombination centre
- Fewer levels in *p*-type Si (right)

- Many levels in *n*-type (left)
 Deep level of V₂O acts a recombination centre
- Fewer levels in *p*-type Si (right)
 Mainly shallow (no deep V₂O level)

(Tipping and Newman, Semicond. Sci. Technol., 2, 389 (1987))

• B_i (*R*-line) anneals ~ 230 K leading to $B_i B_s$ (*Q*-line)

(Tipping and Newman, Semicond. Sci. Technol., 2, 389 (1987))

• B_i (*R*-line) anneals ~ 230 K leading to $B_i B_s$ (*Q*-line)

• $\mathsf{B}_i\mathsf{B}_s$ stable to $\sim 220^\circ\mathsf{C}$

A. R. Bean , J. Phys. C 5, 379 (1972).

(Tipping and Newman, Semicond. Sci. Technol., 2, 389 (1987))

- B_i (*R*-line) anneals ~ 230 K leading to $B_i B_s$ (*Q*-line)
- $B_i B_s$ stable to $\sim 220^{\circ} C$ A. R. Bean , J. Phys. C 5, 379 (1972).
- $B_i B_s$ is electrically inactive

 E_c - 0.23 eV level as B_i anneals (p and n-Si)

- E_c 0.23 eV level as B_i anneals (p and n-Si)
- Production rate \propto [B] and [O] but decays as [B] $^{-1/2}$ for high [B]
 - P. M. Mooney et al., Phys. Rev. B 15, 3836 (1977), L. C. Kimerling et al., Mater. Sci. Forum 38-41, 141 (1989).

- E_c 0.23 eV level as B_i anneals (p and n-Si)
- Production rate \propto [B] and [O] but decays as [B] $^{-1/2}$ for high [B]

P. M. Mooney et al., Phys. Rev. B 15, 3836 (1977), L. C. Kimerling et al., Mater. Sci. Forum 38-41, 141 (1989).

• In agreement with experiment we find B_iO_i

• E_c - 0.23 eV level as B_i anneals (p and n-Si)

- Production rate \propto [B] and [O] but decays as [B] $^{-1/2}$ for high [B]

P. M. Mooney et al., Phys. Rev. B 15, 3836 (1977), L. C. Kimerling et al., Mater. Sci. Forum 38-41, 141 (1989).

• In agreement with experiment we find B_iO_i

• E_c - 0.23 eV level as B_i anneals (p and n-Si)

 \bullet Production rate \propto [B] and [O] but decays as [B]^{-1/2} for high [B]

P. M. Mooney et al., Phys. Rev. B 15, 3836 (1977), L. C. Kimerling et al., Mater. Sci. Forum 38-41, 141 (1989).

• In agreement with experiment we find B_iO_i $\star E(0/+) = E_c - 0.22 \text{ eV}$

• E_c - 0.23 eV level as B_i anneals (p and n-Si)

 \bullet Production rate \propto [B] and [O] but decays as [B]^{-1/2} for high [B]

P. M. Mooney et al., Phys. Rev. B 15, 3836 (1977), L. C. Kimerling et al., Mater. Sci. Forum 38-41, 141 (1989).

In agreement with experiment we find B_iO_i
 ★ E(0/+) = E_c - 0.22 eV
 ★ E_A = 1.2 eV (using experimental W_{B_i})

J. R. Troxell and G. D. Watkins, Phys. Rev. B 22, 921 (1980).

• $E_v + 0.30 \text{ eV}$ level as $B_i O_i$ anneals (~ 150°C)

- $E_v + 0.30 \text{ eV}$ level as $B_i O_i$ anneals (~ 150°C)
- Production rate \propto [C] and [B]⁻¹ but independent of [O]

P. M. Mooney et al., Phys. Rev. B 15, 3836 (1977), L. C. Kimerling et al., Mater. Sci. Forum 38-41, 141 (1989).

- $E_v + 0.30 \text{ eV}$ level as $B_i O_i$ anneals (~ 150°C)
- Production rate \propto [C] and [B]⁻¹ but independent of [O]

P. M. Mooney et al., Phys. Rev. B 15, 3836 (1977), L. C. Kimerling et al., Mater. Sci. Forum 38-41, 141 (1989).

• In agreement with experiment we find B_iC_s

• $E_v + 0.30 \text{ eV}$ level as $B_i O_i$ anneals (~ 150°C)

• Production rate \propto [C] and [B]⁻¹ but independent of [O]

P. M. Mooney et al., Phys. Rev. B 15, 3836 (1977), L. C. Kimerling et al., Mater. Sci. Forum 38-41, 141 (1989).

• In agreement with experiment we find B_iC_s

• $E_v + 0.30 \text{ eV}$ level as $B_i O_i$ anneals (~ 150°C)

• Production rate \propto [C] and [B]⁻¹ but independent of [O]

P. M. Mooney et al., Phys. Rev. B 15, 3836 (1977), L. C. Kimerling et al., Mater. Sci. Forum 38-41, 141 (1989).

• In agreement with experiment we find B_iC_s $\star E(0/+) = E_v + 0.24 \text{ eV}$

• $E_v + 0.30 \text{ eV}$ level as $B_i O_i$ anneals (~ 150°C)

• Production rate \propto [C] and [B]⁻¹ but independent of [O]

P. M. Mooney et al., Phys. Rev. B 15, 3836 (1977), L. C. Kimerling et al., Mater. Sci. Forum 38-41, 141 (1989).

In agreement with experiment we find B_iC_s
 ★ E(0/+) = E_v + 0.24 eV
 ★ Would dissociate at ~ 400°C

Boron-hydrogen complex

N. Yarykin, O. V. Feklisova and J. Weber, private communication (2003)

N. Yarykin, O. V. Feklisova and J. Weber, private communication (2003)

 Cz-Si after 170-370°C anneal, Fz-Si at room temperature

N. Yarykin, O. V. Feklisova and J. Weber, private communication (2003)

- Cz-Si after 170-370°C anneal, Fz-Si at room temperature
- Defect concentration \propto [B]?

O. Feklisova et al, Physica B **308-310**, 210 (2001).

N. Yarykin, O. V. Feklisova and J. Weber, private communication (2003)

- Cz-Si after 170-370°C anneal, Fz-Si at room temperature
- Defect concentration \propto [B]?

O. Feklisova *et al*, Physica B **308-310**, 210 (2001).

• $B_i B_s H_i$ most likely candidate for $E_v + 0.51$ eV level

• $E_v + 0.51$ dominant level in hydrogenated, *e*-irradiated, *p*-Si with [B] = (2-20) ×10¹⁵ cm⁻³ N. Yarykin, O. V. Feklisova and J. Weber, private communication (2003)

Boron-hydrogen complex

- Cz-Si after 170-370°C anneal, Fz-Si at room temperature
- Defect concentration \propto [B]?

O. Feklisova *et al*, Physica B **308-310**, 210 (2001).

• $B_i B_s H_i$ most likely candidate for $E_v + 0.51$ eV level

• $E_v + 0.51$ dominant level in hydrogenated, *e*-irradiated, *p*-Si with [B] = (2-20) ×10¹⁵ cm⁻³ N. Yarykin, O. V. Feklisova and J. Weber, private communication (2003)

Boron-hydrogen complex

- Cz-Si after 170-370°C anneal, Fz-Si at room temperature
- Defect concentration \propto [B]?

O. Feklisova *et al*, Physica B **308-310**, 210 (2001).

• $B_i B_s H_i$ most likely candidate for $E_v + 0.51$ eV level * Two levels close to $E_v + 0.5$ (negative-U?)

• $E_v + 0.51$ dominant level in hydrogenated, *e*-irradiated, p-Si with [B] = (2-20) $\times 10^{15}$ cm⁻³ N. Yarykin, O. V. Feklisova and J. Weber, private communication (2003)

Boron-hydrogen complex

- Cz-Si after 170-370°C anneal, Fz-Si at room temperature
- Defect concentration \propto [B]?

O. Feklisova et al, Physica B **308-310**, 210 (2001).

- $B_i B_s H_i$ most likely candidate for $E_v + 0.51$ eV level \star Two levels close to $E_v + 0.5$ (negative-U?) $\star E_A = 1.8 \text{ eV}$ (experimentally 1.4 eV) N. Yarykin, O. V. Feklisova and J. Weber, private communication (2003)

Summary and conclusions Even at R.T. B_i is mobile and will form complexes

Even at R.T. B_i is mobile and will form complexes
 ★ May complex with O at R.T. ⇒ B_iO_i

• Even at R.T. B_i is mobile and will form complexes

★ May complex with O at R.T. \Rightarrow B_iO_i * E_c - 0.23 eV

- ★ May complex with O at R.T. \Rightarrow B_iO_i * E_c - 0.23 eV
- ★ If then anneal above $150^{\circ}C \Rightarrow B_iC_s$

- ★ May complex with O at R.T. \Rightarrow B_iO_i * E_c - 0.23 eV
- ★ If then anneal above $150^{\circ}C \Rightarrow B_iC_s$ * $E_v + 0.30 \text{ eV}$

- ★ May complex with O at R.T. \Rightarrow B_iO_i * E_c - 0.23 eV
- ★ If then anneal above $150^{\circ}C \Rightarrow B_iC_s$ * $E_v + 0.30 \text{ eV}$
- ★ If high enough $[B] \Rightarrow B_i B_s$ (below R.T.)

- ★ May complex with O at R.T. \Rightarrow B_iO_i * E_c - 0.23 eV
- ★ If then anneal above $150^{\circ}C \Rightarrow B_iC_s$ * $E_v + 0.30 \text{ eV}$
- ★ If high enough $[B] \Rightarrow B_i B_s$ (below R.T.)
 - * Electrically inactive

- ★ May complex with O at R.T. \Rightarrow B_iO_i * E_c - 0.23 eV
- ★ If then anneal above $150^{\circ}C \Rightarrow B_iC_s$ * $E_v + 0.30 \text{ eV}$
- * If high enough $[B] \Rightarrow B_i B_s$ (below R.T.)
 - * Electrically inactive
- ★ But if H present \Rightarrow B_iB_sH_i

- ★ May complex with O at R.T. \Rightarrow B_iO_i * E_c - 0.23 eV
- ★ If then anneal above $150^{\circ}C \Rightarrow B_iC_s$ * $E_v + 0.30 \text{ eV}$
- * If high enough $[B] \Rightarrow B_i B_s$ (below R.T.)
 - * Electrically inactive
- ★ But if H present \Rightarrow B_iB_sH_i
 - * $E_v + 0.51 \text{ eV}$

- ★ May complex with O at R.T. \Rightarrow B_iO_i * E_c - 0.23 eV
- ★ If then anneal above $150^{\circ}C \Rightarrow B_iC_s$ * $E_v + 0.30 \text{ eV}$
- ★ If high enough $[B] \Rightarrow B_i B_s$ (below R.T.)
 - * Electrically inactive
- ★ But if H present \Rightarrow B_iB_sH_i
 - * $E_v + 0.51 \text{ eV}$
- B_iO_i would be the dominant interstitial defect in *p*-type detectors

• Even at R.T. B_i is mobile and will form complexes

- ★ May complex with O at R.T. \Rightarrow B_iO_i * E_c - 0.23 eV
- ★ If then anneal above $150^{\circ}C \Rightarrow B_iC_s$ * $E_v + 0.30 \text{ eV}$
- ★ If high enough $[B] \Rightarrow B_i B_s$ (below R.T.)
 - * Electrically inactive
- \star But if H present \Rightarrow B_iB_sH_i
 - * $E_v + 0.51 \text{ eV}$
- B_iO_i would be the dominant interstitial defect in *p*-type detectors

$$\star \sigma_n = 10^{-13}$$
, $\sigma_p pprox 10^{-20}~{
m cm}^2$

P. M. Mooney et al., Phys. Rev. B 15, 3836 (1977).