Overview: LHC experiments upgrade

Stefan Tapprogge

Institut für Physik

2008 NSS-MIC Special Focus Workshops

Oct 19th 2008, Dresden

- Physics motivation
- Machine upgrade
- Detector upgrades

Physics motivation

Physics motivation

• LHC has a huge physics potential

o new physics expected at the TeV scale

- \rightarrow find the missing piece of the SM (Higgs boson)
- find new forces/particles beyond the SM
- improvements/indications via precision measurements
- prepare further extensions of physics program
 - \rightarrow extend reach for discoveries

o access to larger mass scales and/or to rare processes

> statistically limited precision measurements

• physics aims of upgrade will be a 'moving target'

→ to be influenced by first LHC results

Physics motivation (cont'd)

• extension of physics reach via

- \rightarrow increase in luminosity
- \rightarrow increase in \sqrt{s}
- \rightarrow increase in luminosity and \sqrt{s}

• following selected examples use \rightarrow luminosity: 10³⁴ vs. 10³⁵ cm⁻² s⁻¹

 $\rightarrow \sqrt{s}$: **14** vs. **28** vs. **42** TeV

(for fixed \sqrt{s})

(for fixed luminosity)

THE EUROPEAN PHYSICAL JOURNAL C

Eur. Phys. J.

C39 (2005), 293

• more details to be found in:

Physics potential and experimental challenges of the LHC luminosity upgrade

Conveners: F. Gianotti¹, M.L. Mangano², T. Virdee^{1,3}

Example: new heavy gauge bosons

• luminosity increase by factor 10

 \rightarrow increase Z' mass reach by ~ 1 TeV

• \sqrt{s} increase gives larger benefit (wrt lumi increase)

increase W' mass reach (while less luminosity needed)

Example: supersymmetry

- within the mSUGRA model
- clear extension of physics reach

→ as expected, higher √s better then higher L

- to profit from extended reach
 - → need good object ID and reconstruction

Example: (SM) Higgs boson properties

improvement on coupling to fermions and bosons
access to rare decay modes: H → μμ, H → Zγ
access to Higgs self-coupling ?

Example: triple gauge boson couplings

- sensitivity to anomalous couplings improves with
 - → higher √s
 - \rightarrow higher L
 - → higher √s and L
- SLHC reaches level of ew radiative corrections

Summary on physics motivation

- largest benefits due to increase in \sqrt{s}
 - experimental conditions possibly less challenging
- luminosity increase provides good extension
 - \rightarrow increased reach in mass scale typically by 20-30 %
 - strong requirements on detector performance
 - for (some) discoveries reduced performance tolerable
 - ${\rm O}$ for (precision) measurements, similar performance in high $p_{\rm T}$ signatures as for present detectors needed
 - \rightarrow further motivation: being prepared for the unforeseen
 - problems, failures, ...

upgrades of LHCb and ALICE to extend their physics potential being studied as well

not so much coupled to accelerator upgrades - not discussed here

Machine upgrade

When to upgrade?

• upgrade around 2016(+n) seems appropriate

timescales in this talk as before Sep 19th incident

Upgrade planning

- LHC collimation system not fully installed
 - → to happen in 2010/11 limited to 40% intensity now
- staged approach
 - → phase 1: reliable operation at up to $3*10^{34}$ cm⁻² s⁻¹
 - new injector LINAC4: approved
 - → factor of 2.3 in luminosity (larger current)
 - introduce new triplets with $\beta = 0.25m$ (larger aperture)
 - → factor of 2 in luminosity
 - \rightarrow phase 2: target luminosity of 10³⁵ cm⁻² s⁻¹
 - injector upgrades (higher current, reliability; shorter injection time) • possibly triplets with $\beta *=0.15m$ (Nb₃Sn)
 - → also envisaged: 'complementary measures'
 - long range beam-beam compensation, crab cavities, advanced collimators, ...
 - phase 2 might be phase 1 + complementary measures

• longer term: energy upgrade, LHeC, ...

Peak and integrated luminosity

• Basis for planning as approved at LHCC meeting 1st July 2008

• Phase 1 start: 6 - 8 month shutdown end 2012

 \rightarrow accumulate 700 fb⁻¹ of integrated luminosity

• Phase 2 start: 18 month shutdown at end of 2016

minimum lifetime of detectors in phase 2 corresponding to 3000 fb⁻¹ integrated luminosity

Upgrade schemes

early-separation dipoles in side detectors , crab cavities \rightarrow hardware inside ATLAS & CMS detectors,

first hadron crab cavities; off-δ β-beat

- β* ~10 cm
- crab cavities with 60% higher voltage
 - \rightarrow first hadron crab cavities, off- $\delta\beta$ -beat

large Piwinski angle (LPA)

F. Ruggiero, W. Scandale. F. Zimmermann

larger-aperture triplet magnets

- 50 ns spacing, longer & more intense bunches (5x10¹¹ protons/bunch)
- $\beta^* \sim 25$ cm, no elements inside detectors
- long-range beam-beam wire compensation
 - \rightarrow novel operating regime for hadron colliders, and for beam generation

2008 NSS-MIC, Dresden, 19th Oct. 2008

Upgrade parameter overview

parameter	symbol	nominal	ultimate	Early Sep.	Full Crab Xing	L. Piw Angle
transverse emittance	ε [μm]	3.75	3.75	3.75	3.75	3.75
protons per bunch	$N_b [10^{11}]$	1.15	1.7	1.7	1.7	4.9
bunch spacing	Δt [ns]	25	25	25	25	50
beam current	I [A]	0.58	0.86	0.86	0.86	1.22
longitudinal profile		Gauss	Gauss	Gauss	Gauss	Flat
rms bunch length	σ_{z} [cm]	7.55	7.55	7.55	7.55	1
beta* at IP1&5	β* [m]	0.55	0.5	0.08	0.08	25
full crossing angle	θ _e [µrad]	285	315	S.	0	81
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75	^e	С o	2.0
hourglass reduction		1.0	1.0	9,86	0.86	0.99
peak luminosity	$L [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	1	2.3	10 5.5	15.5	10.7
peak events per #ing		19	44	294	294	3 403
initial lumi lifetime	τ_{L} [h]	22	14	2.2	2.2	4.5
effective luminosity (T _{turnaround} =10 h)	$L_{e\!f\!f}[10^{34}{ m cm}^{-2}{ m s}^{-1}]$	0.46	0.91	2.4	2.4	2.5
	T _{run,opt} [h]	21.2	17.0	6.6	6.6	9.5
effective luminosity (T _{turnaround} =5 h)	$L_{e\!f\!f}[10^{34}{ m cm}^{-2}{ m s}^{-1}]$	0.56	1.15	3.6	3.6	3.5
	T _{run,opt} [h]	15.0	12.0	4.6	4.6	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.07 (0.44)	1.04 (0.59)	1.04 (0.59)	1.04 (0.59)	0.36 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	0.25	0.25	0.36
image current heat	P _{IC} [W/m]	0.15	0.33	0.33	0.33	0.78
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.04 (0.38)	0.06 (0.56)	0.06 (0.56)	0.06 (0.56)	0.09 (0.9)
extent luminous region	σ_{l} [cm]	4.5	4.3	3.7	3.7	5.3
comment		nominal	ultimate	D0 + crab	crab	wire comp.

2008 NSS-MIC, Dresden, 19th Oct. 2008

Stefan Tapprogge, Mainz

Bunch structure: LHC & upgrades

Time evolution: luminosity

shorter beam life time of ES/FCC scenario

 usefulness of initial peak luminosity?

 larger number of events per crossing (LPA)

 up to 400 simultaneous inelastic pp interactions

Under study: luminosity leveling

- perform dynamic β^* squeeze during a store
 - Alternative for LPA scenario: dynamic bunch length reduction

favourable for experiments

→ less 'pile-up' events at beginning of store

Evolution of CERN accelerator complex

Increasing the beam energy?

• doubling the energy (DLHC) \sqrt{s} = 28 TeV

→ nominal B field of 16.8 T (design for 18.5 - 19.3 T)

o use Nb₃Sn superconductor

o several 1m models exists (with 10 - 13 T fields)

→ timescales

detailed R&D program: at least 10 years
 production in industry: ~ 8 - 10 years
 high cost

• tripling the energy (TLHC): $\sqrt{s} = 42$ TeV

→ nominal B field of 25 T (design for 28 - 29 T)

• HTS-BSCCO supercond., to be fully demonstrated

• large aperture needed (efficient beam screen)

→ timescales

- R&D program: at least 20 years
- o extremely high costs

P. McIntyre,

PAC05

Summary on machine upgrade

- three scenarios are presently available
 - → LPA (50 ns spacing): highest number of pileup events
 - \rightarrow ES (25 ns spacing): crab cavities and magnet inside exp's
 - > FCC (25 ns spacing): crab cavities, no magnet inside exp's
- clear wishes from experiments (LHCC July 2008)
 - → no machine components inside detectors
 - → pile-up as low as possible
 - → easy luminosity leveling if possible
- significant energy upgrade
 - → much more ambitious and expensive
- keep in mind: what counts in the end is accumulated integrated luminosity!
 - stable running at somewhat lower peak luminosity preferable to unstable running at higher peak luminosities

Detector upgrade

The challenges

- Requirement to fully exploit physics potential
 - → similar detector performance as 'today'
- However much more demanding environment
 - \rightarrow increased backgrounds
 - → larger particle fluxes (radiation damage)
 - → higher rates (increase in occupancies, ...)
- What to upgrade/adapt?
 - > reasonable approach: can not build a new detector!
 - → replacement of tracking detectors
 - 0 10 y lifetime expectation @ 10³⁴ sensor/electronics damage
 - → forward region
 - new machine elements closer to interaction point?
 - \rightarrow check on calorimeter and muon systems
 - > trigger and data acquisition: evolution?

The challenge: visually

Radiation environment

$\ensuremath{\mathsf{CMS}}$ Radiation Dose in Inner Detectors

ATLAS: neutron flux (kHz/cm²)

 allow optimisation of shielding, moderators, beampipe layout

 need to verify radiation and activation levels with initial collisions!

Radiation levels

radiation :

--- 500 fb⁻¹ = ~ 10 years at LHC --- 3000 fb⁻¹ = ~ 3 years at SLHC

CMS tracker

R (cm)	hadron fluence 10 ¹⁴ cm ⁻²	Dose (kGy)
4	30/190	840/5000
11	5/ <mark>28</mark>	190/1130
22	1.5/ <mark>10</mark>	70/ <mark>420</mark>
75	0.3/2	7/40
115	0.2/ <mark>1</mark>	2/11

CMS call	ormeters	1 Gy = 1 Joule/Kg		
η	ECAL dose (kGv)	HCAL dose (kGv)		
0-15	3/18	0.2/1		
0-1.5	5710	0.271		
2.0	20/120	4/25		
2.9	200/1200	40/250		
3.5		100/ <mark>600</mark>		
5		1000/ <mark>6000</mark>		

• important issues

- validation with first real LHC data of present background models absolutely mandatory!
- → need operational experience

CMC calonimatona

Upgrade in phase 1

o no major long shutdown foreseen presently

- tracking detectors
 - → CMS: replace B-layer (possibly whole pixel system)
 - fast replacement of pixel detector possible
 - ATLAS: install new B-layer inside current pixel system
 beam pipe with smaller diameter
- trigger and DAQ
 - evolve/expand/upgrade to handle higher rates and occupancies
 - profit from larger processing power for more complex trigger algorithms in higher level trigger(s)
 - → CMS:
 - more fine grained information for Level-1 (calo/muon)
 - Level-1 track trigger based on new pixel ?
 - \rightarrow ATLAS:
 - fast track finder after Level-1 accept?
 - topological selection criteria at Level-1?

assessment (also including other systems) ongoing

Tracker upgrades

• will be discussed in detail in the next presentation

>'Tracker Upgrades'by P. Allport

>stay tuned !

Calorimeters

• will mostly remain adequate for SLHC

- → new to optimize signal processing
- → consider (partially) new readout electronics
- ATLAS forward calorimeter (FCAL)
 - might be suffering from space charge build-up, boiling of liquid Ar
 - assessment in high intensity testbeam on-going
 - options considered (if necessary)
 - new warm calorimeter in front of present FCAL
 - open (endcap) cryostat and replace FCAL

Muon detectors

Limitations – occupancies of the chambers

At least half of the chambers in the inner end-cap disk would have to be replaced by chambers with higher high rate capability.

Almost all chamber would have to be replaced.

large uncertainties in background simulation

o to be verified with initial data

→ ATLAS: open air core toroid

• might need to replace minimal or large fraction of muon chambers

→ safety factor of 5 in present design

→ CMS: rates probably ok

• new readout electronics ?

- options for background reduction
 - ATLAS: consider to have full Al beam pipe

• expensive, but up to factor 3

- → CMS: additional shielding towards $|\eta|=2$
 - borated polyethylene, PMT shielding

Trigger and DAQ

calorimeters

- → most parts will be kept (partially new electronics)
- → ATLAS: forward calorimeter subject to most radiation
- → CMS: impact of machine elements on HF, radiation damage of scintillator (HCAL) for $|\eta|>2$

muon systems

- need running experience, some electronics might be replaced, background uncertainties (data needed)
- → ATLAS: reduction of background (factor 2) by Be beampipe
- trigger and data acquisition
 - → has to cope with higher rates, occupancies, ...
 - > CMS: need for track trigger at first level

CMS track trigger at Level-1

Outlook

Outlook

 completion and exploitation of design LHC machine and detectors has the highest priority!

• strong physics case for upgraded LHC

- > 'moving target', will evolve with first LHC results
- luminosity upgrade to happen in (two) phases
 - → parameters and details will (continue to) evolve
- detectors will develop with increasing luminosity
 - → minimize changes necessary (esp. phase 1)
 - complete replacement of tracking (inner) detectors
 needed for phase 2
 - \rightarrow costs are not negligible

acknowledgement: results presented based on work from many colleagues from machine groups, ATLAS and CMS!

Resources for more information

• CERN

- POFPA (Physics Opportunities for Future Proton Accelerators)
 <u>http://pofpa.web.cern.ch/pofpa/</u>
- → PAF (Proton Accelerators for the Future)
 - o http://paf.web.cern.ch/paf/
- Machine upgrade
 - → CARE-HHH network
 - High energy High intensity Hadron beams
 - <u>http://care-hhh.web.cern.ch/care-hhh</u>
 - → CARE-NED joint activity
 - Next European Dipole
 - o http://lt.tnw.utwente.nl/research/HCS/Projects/CARE-NED/
 - → US.LARP
 - Large hadron collider Accelerator Research Program
 - <u>http://uslarp.org/</u>
- Detector upgrades
 - → ATLAS

• http://atlas.web.cern.ch/Atlas/GROUPS/UPGRADES/

→ CMS:

• Expression of Interest CERN/LHCC 2007-014

Example: MSSM Higgs bosons

• difficult region:

- \rightarrow large m_A values
- → only one SM like Higgs boson observable

 increased SLHC luminosity

> → coverage in m_A extended by about 100 GeV

Example: strong V_L-V_L scattering

• if no Higgs found $q \longrightarrow W, Z$ W, Z fusion/scattering : $q \longrightarrow W, Z$

• $Z_L Z_L$ resonance at mass of 750 GeV

- \rightarrow decay to 4 leptons
- → L_{int} = 3000 fb⁻¹
- → not detectable at LHC

requirement of forward jet tagging

Fake fwd jet tag probability ($|\eta| > 2$) from pile-up (preliminary ...)

Early separation scenario (ES)

- ultimate beam
- stronger focusing
- early separation dipoles
- crab cavities

• challenges

- \rightarrow new machine elements (deep) inside the detectors
- \rightarrow crab cavities for hadron beams
- → poor beam and luminosity lifetime

e.g. F. Zimmermann,

talk at PAC07

Crab cavities

- RF cavities
 → local around IP
 → alobal
 - → global placement at 2 locations

first results obtained in electron beams at KEK
 → no experience at a hadron collider

• commitments from various labs for R&D effort

→ could be a magic solution

Large Piwinski angle scenario (LPA)

interactions

• challenges

- → high bunch charge, larger beam current
- → operate with large Piwinski parameter (unproven)
- → wire compensation (almost established)
- e.g. F. Zimmermann, talk at PAC07

Wire compensation

• install wire on each side of interaction point

Similar force (~ 1/r) but opposite sign to beam-beam force

requirements

\rightarrow current of few 100 kA in pulsed mode

onot easy, R&D required

LHCb upgrade plans

- plan to operate 5 years at 2*10³³ cm⁻² s⁻¹
 - → accumulate 100 fb⁻¹

• some of the physics goals

- \circ B_s physics 'unique' to LHCb
- → weak mixing phase ϕ_s (from $B_s \rightarrow J/\psi \phi$)
- → b→s transition using $B_s \rightarrow \phi \phi$
- → CKM angle γ from B → DK, B_s → D_s K
- experimental upgrade independent of LHC upgrade
 - replace VELO with more radiation hard variant
 - → add first level trigger on detached vertices
 - → further components under study

ALICE upgrade plans

• present physics program extends until 2017

- \rightarrow Pb Pb, p p and p ion running
- \rightarrow later low mass ions and lower energies
- present plans for further installation
 - → 2010 electromagnetic calorimeter
 - → 2012-2015 thinner beam pipe, new pixel detector, improved high p_T particle ID, improved forward instrumentation
- request for accelerator R&D to increase PbPb luminosity to 5*10²⁷ cm⁻² s⁻¹
 - \rightarrow need modification to TPC, TPC electronics and DAQ