New sensor materials

Gregor Kramberger Jozef Stefan Institute, Ljubjana, Slovenia

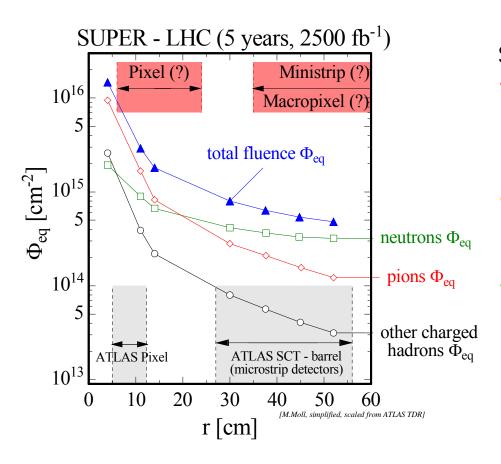
(results from RD42, RD50 collaborations, so many thanks to all)

Outline

- Motivation
- Radiation damage basics
- MCz/Cz/Epi
 - \Box V_{fd} evolution (donor generation)
 - Annealing
 - Mixed radiation
 - □ Charge collection
- CCE in FZ n⁺-p strip detectors
- Diamond detectors

Silicon detectors used in almost all working experiments!

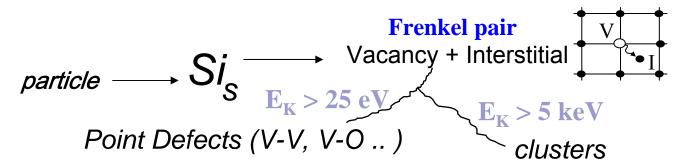
"If it works it is already obsolete", Marshall McLuhan


- □ n-type
- □ processed on Float Zone Silicon (Diffusion Oxygenation used for pixel detectors at LHC)
- Are either single sided with p^+ (p^+ -n- n^+ device) or n^+ (n^+ -n-p+ device) read-out or double sided.

Why do we need better material for SLHC?

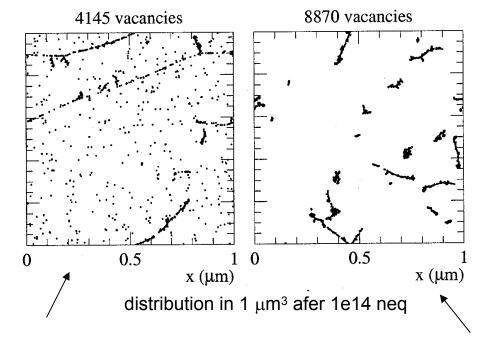
- Primarily to achieve sufficient charge collection efficiency to allow tracking
- •If large area are covered the cost affordable solution is sought

Motivation (II)


SLHC tracker

- Inner tracker r<30 cm (pixel detector)
 - <u>rad-hard</u> material and/or new design (3D, rad-hard 2D, <u>diamond</u>, gossip)
- Middle tracker 30<r<60 cm (short strips, macropixels)
 - ▶ rad-hard material
- Outer tracker 60<r<107 cm (long strips)
 - existing technology/new rad-hard material

At present there is no complete solution for tracking at SLHC, but extensive R&D is going on! This is R&D talk and issues such as availability and costs are not addressed.



Basics of radiation damage (I)

Damage effects generally scales with NIEL, however differences between proton & neutron damage

important for defect generation in silicon bulk

24 GeV protons clusters+point defects

Reactor neutrons mainly clusters

Basics of radiation damage (II)

Silicon

- Leakage current
 - Anneals in time
- ☐ Effective trapping times

•
$$\beta_h > \beta_e (\sim 20\%)$$

$$\Delta I = \alpha(t, T) \Phi_{eq} V$$

$$\frac{1}{\tau_{eff,e,h}} = \beta_{e,h}(t,T) \, \Phi_{eq}$$

- β_h anti-anneals, β_e anneals (~20-30%)
- charged hadrons somewhat more damaging than neutrons (~20%)

Invariant on any Si material property: [O],[C], type (p,n), resistivity, wafer production Omitted in the talk!

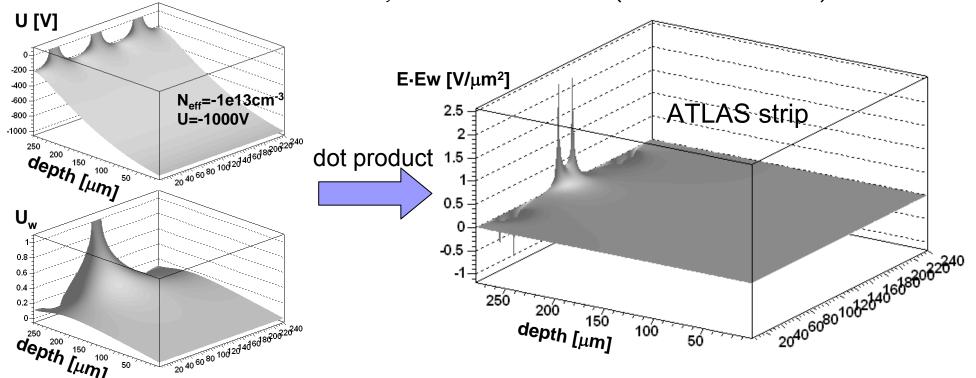
Depends on silicon

Diamonds

- □ wide band -> no leakage
- Neff -> 0 ; homogenous field (polarization in presence of traps)
- charge trapping

Drift equation -signal

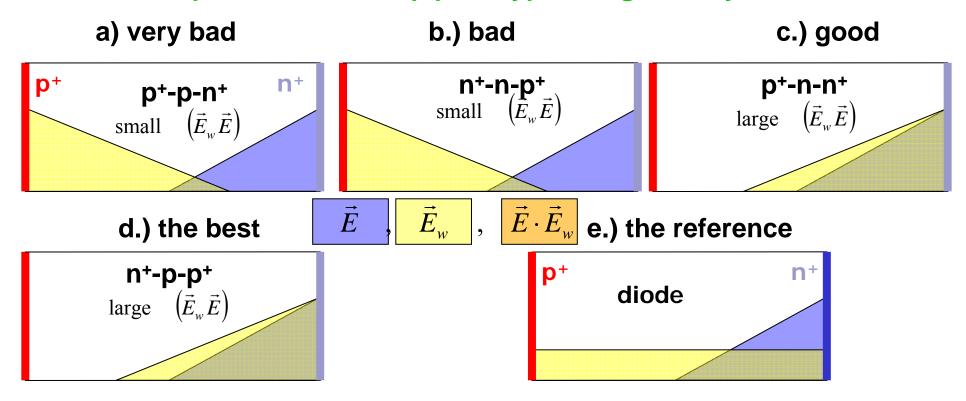
$$I = q\vec{v}\vec{E}_{w} \qquad \qquad \text{drift current of a single carrier}$$


$$Q(t) = \sum_{e-h \ pairs} \int_{t=0}^{t_{\text{int}}} I dt = \sum_{e-h \ pairs} q \int_{t=0}^{t_{\text{int}}} \exp(-\frac{t}{\tau_{eff,e,h}}) \mu_{e,h} \vec{E} \cdot \vec{E}_{w} dt$$

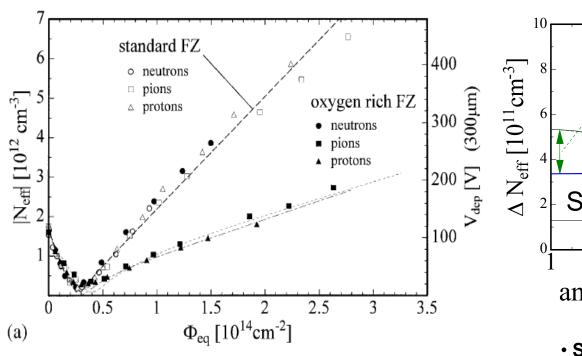
geometry factor peaked at electrodes

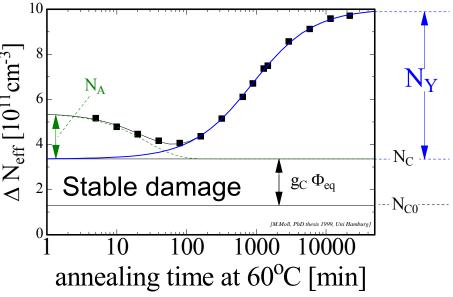
- •trapping term ($au_{eff,e} \sim au_{eff,h}$)
- •drift velocity ($\mu_e \sim 3\mu_h$)

11/13/2008


- electrons get less trapped
- they should drift to the strips/pixels and contribute most to Q (n+ readout for silicon)

Options for the strip/pixel type and geometry in Si


If detectors can be fully depleted the order goes a.->c.->b->d. At sufficiently overdepleted device b.~d. > a.~c.


Diamond is resistive enough to have ohmic contacts – the collecting particles are chosen by polarity of the bias!.

V_{fd} dependence on fluence (RD48)

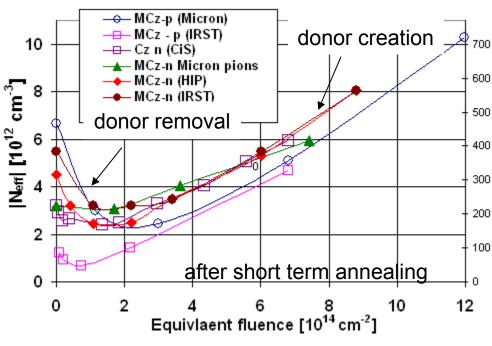
- ➤ In FZ detectors irradiation introduces effectively negative space charge!
- For detectors irradiated with <u>charged hadrons</u>
- ❖ RD48: Higher oxygen content ⇒ less negative space charge Oxygen getters radiation-induced vacancies ⇒ prevent formation of Di-vacancy (V_2) related deep acceptor levels (VO complex is inactive at room temperature)
- ➤ "Cluster damage" ⇒ negative charge, [O] concentration low in clusters therefore no effect

- Short term: "Beneficial annealing"-N_A
- Long term: "Reverse annealing"-Ny
 - time constant depends on temperature:
 - ~ 500 years (-10°C)
 - ~ 500 days (20°C)
 - ~ 21 hours (60°C)
 - Consequence: Detectors must be cooled even when the experiment is not running!

Questions for RD50

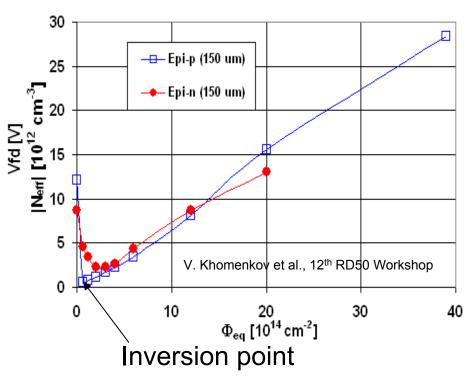
- We know that we need n⁺-p junction, so p-type material ...
- What happens at much higher oxygen concentration, in DOFZ [O]=2e17 cm⁻³?
- Are there any new silicon materials that we overlooked?

Material	Symbol	ρ (Ω cm)	[O _i] (cm ⁻³)
Standard n- and p-type FZ	FZ	1–7×10 ³	< 5×10 ¹⁶
Diffusion oxygenated FZ, n- and p-type	DOFZ	1–7×10 ³	~ 1–2×10 ¹⁷
Czochralski Sumitomo, Japan	Cz	~ 1×10 ³	~ 8-9×10 ¹⁷
Magnetic Czochralski Okmetic, Finland	MCz	~ 1×10 ³	~ 4-9×10 ¹⁷
Epitaxial layers on Cz-substrates, ITME	EPI	50 - 500	< 1×10 ¹⁷ very low [C]

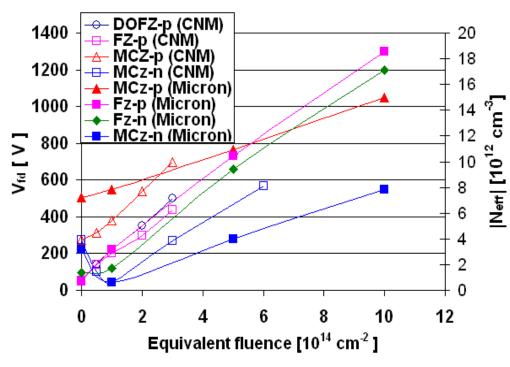

Processing pads/strips/pixels done by: IRST-Trento, CNM Barcelona, CiS Erfurt, Micron

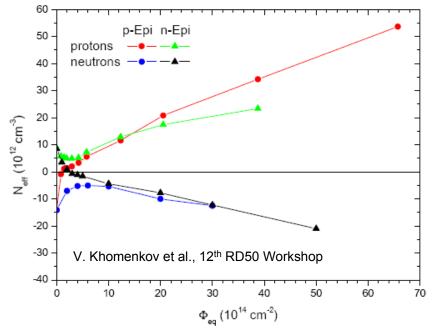
Epi-Si:

- •only up to 150 μm -> $v_{sat} \tau_{eff}$ ~40 μm at 1e16 cm⁻² -> no need for thicker device
- •grown on Cz substrate, therefore double sided processing is not possible MCz/Cz silicon:
- Can have problems with homogeneity over the wafer!



Epi and MCz/Cz after charge hadron irr.




- •It appears as MCz-p remains p-type ($V_{fd}>>0$), but N_{eff} is not constant and the dominant junction can move at $V_{fd}>0$ ("double junction" effect)
- •No influence of initial donors at high fluence (complete donor removal) for MCz-n
- Strong acceptor removal for MCz-p

- •Epi-n,p positive space charge introduced ($|g_c|$ ~0.0075 cm⁻¹) -> but epi is O and C lean material
- •The introduction rate depends on thickness of epitaxial silicon 0.024-0.0075 cm $^{-1}$ (25-150 μ m)
- •CiS and IRST processes show similar results

Universal behavior for the neutron irradiated 300 μm thick samples

- $\checkmark g_c \sim 0.02 \text{ cm}^{-1}$ (negative space charge)
- √no acceptor removal

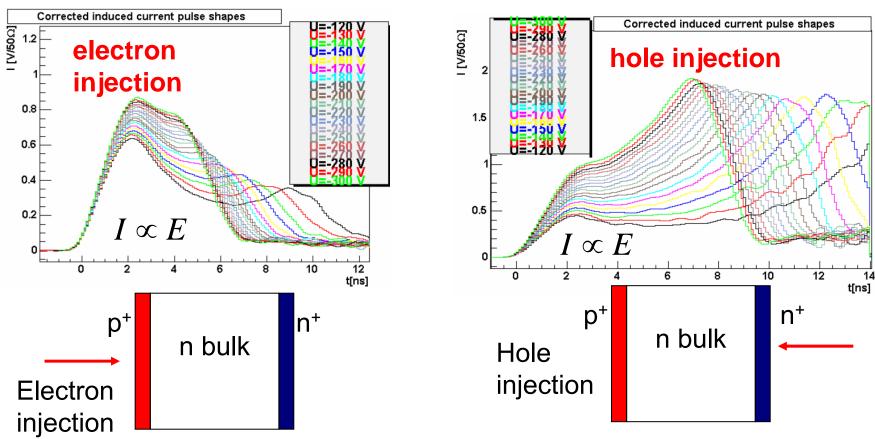
Up to now the only difference is seen in Micron processed MCz material, which has a $g_c \sim 0.01$ cm⁻¹

Epi-Si (150 μm) shows smaller damage than standard after neutron irradiations: $g_c \sim 0.004$ -0.005 cm⁻¹(150 μm,500 Ωcm) $g_c \sim 0.007$ cm⁻¹ (75 μm,150Ωcm) $g_c \sim 0.008$ cm⁻¹ (donors) (50 μm, 50Ωcm)

Also other materials may show smaller damage at lower resistivity!

What is the explanation of positive space charge?

- It is related to oxygen and point defects!
 - \square ⁶⁰Co γ irradiated DOFZ samples -> introduction of positive space charge!
 - □ After neutron irradiation we see negative space charge!
- An explanation of positive space charge with <u>oxygen dimmer</u> (O_{2i}) is likely
 - □ Oxygen dimmers influence formation of BD (probably TDD2)!
 - □ in MCz/Cz (high intrinsic O_i and O_{2i})
 - □ in Epitaxial silicon O_{2i} out-diffuses (very mobile) from low resistivity Cz substrate (influence of thickness)


How do we know that the dominant space charge is really positive?

- □ TCT signals (probing the electric field profile)
- □ Annealing plot (decay of acceptors-plateau-generation of acceptors)
- Mixed irradiations (compensation of donors and acceptors)

How do we know $N_{eff}>0$ – TCT signals

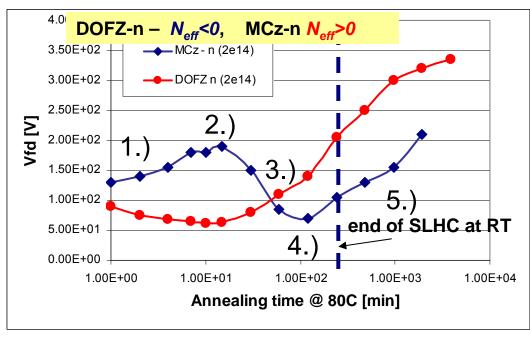
MCz-n detector at T=-10°C after 5e14 pcm⁻² annealed ~14 days at RT (V_{fd} ~110 V)

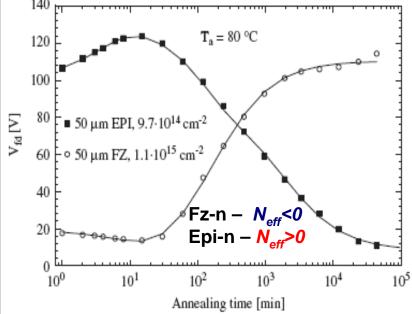
For e/h injection high field region is at the p⁺ contact, hence $N_{eff}>0$ (dominant space charge determining the main junction)

At very high fluences the derivation of space charge from TCT becomes very sensitive to the value of τ_{eff} !

Annealing behavior of MCz, epi-Si detectors

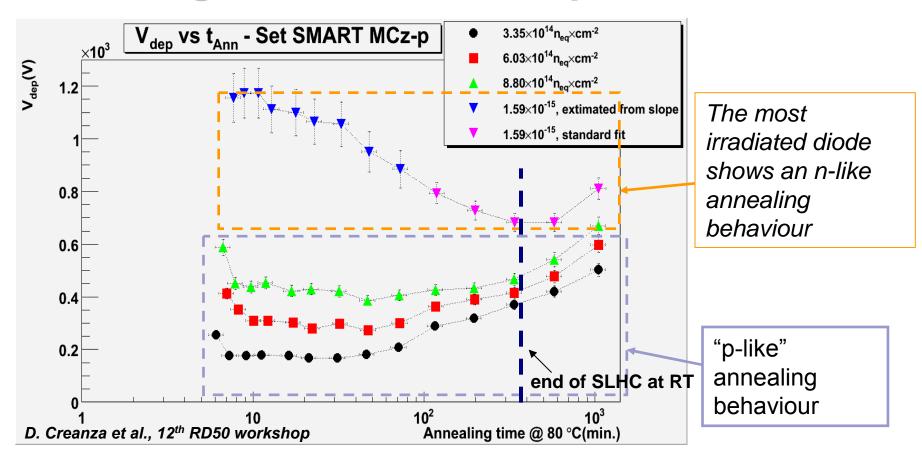
Finger print of positive space charge seen in annealing

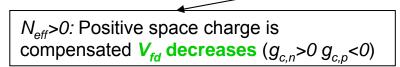

- 1. decay of acceptors -> increase of V_{td}
- 2. local maximum of V_{fd} (plateau)
- 3. generation of acceptors -> decrease of V_{td}
- inversion of space charge at late stages, but V_{fd}
 never really goes to ~0 (double junction)
- 5. further generation of acceptors increase of V_{td}


Long term annealing similar as in FZ!

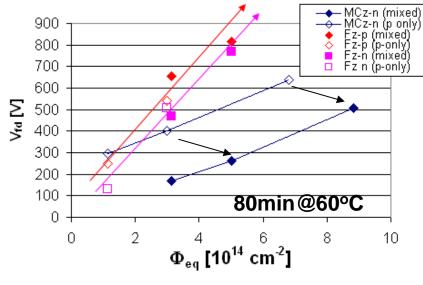
Long term amplitude: $g_{Y}\sim 3-5 \ 10^{-2} \ cm^{-1}$

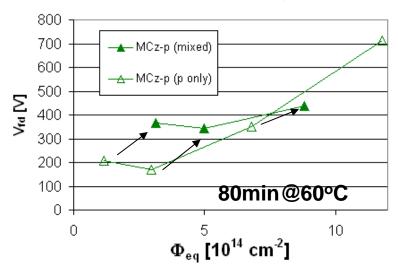
Time constants : τ_{ra} ~few 100 min @80°C (τ_{ra} ~ 80 min @ 80°C for FZ = 1.2y at RT)


In epitaxial silicon at late stages (beyond the interest of SLHC) a second component appears.


Annealing behavior of MCz-p detectors

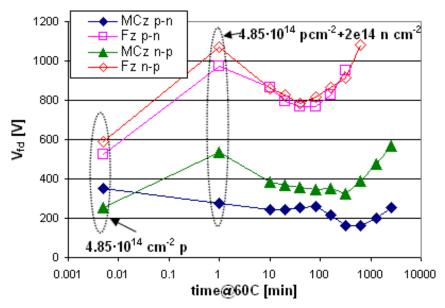
- At higher fluences donors are introduced (TCT, anneal)
- •At lower fluences (TCT donors, annealing acceptors)

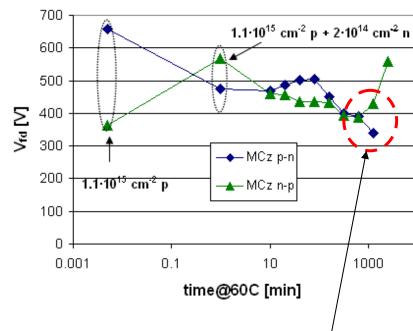



Detectors irradiated with charged hadrons can have positive or negative space charge Irradiation with neutrons introduces acceptors

 N_{eff} <0: Negative space charge is added V_{fd} increases $(g_{c,n}$ >0, $g_{c,p}$ >0)

Micron diodes irradiated with protons first and then with 2e14 n cm⁻² (control samples p-only, open marker)




- •FZ-p,n as expected increase of V_{fd} proportional to Φ_{eq}
- •MCz-n as expected decrease of V_{fd} for the expected amount
- •MCz-p at larger fluences the increase of V_{fd} is not proportional to the added fluence —as if material becomes more "n-like" with fluence same as observed in annealing plots

Mixed irradiations (II) - annealing

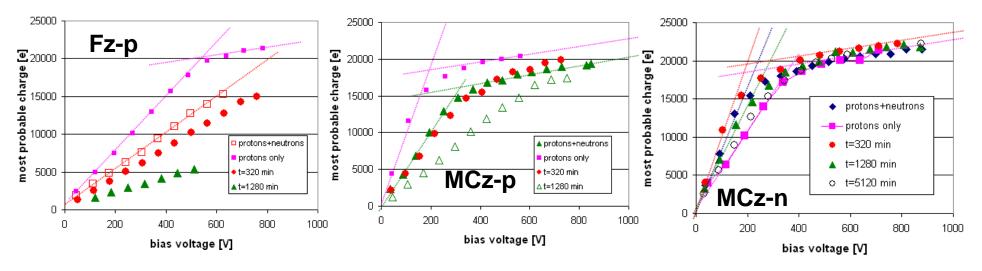
Micron diodes irradiated with protons first and then with neutrons (the first point is before n irr.)

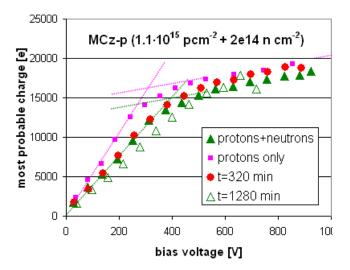
The "picture" is also confirmed in the annealing:

•Fz n,p – expected behavior for N_{eff} <0 •MCz-n – expected behavior for N_{eff} >0

(note the decrease of V_{fd} after neutron irr.)

•MCz-p points to N_{eff} <0, but at higher fluence the increase of V_{fd} is smaller than expected


Note: Φ_{eq} =9e14 cm⁻², V_{fd} ~400 V • 1.5 y at 20°C


•~1/3 of the SLHC fluence at r=15 cm with proper mix

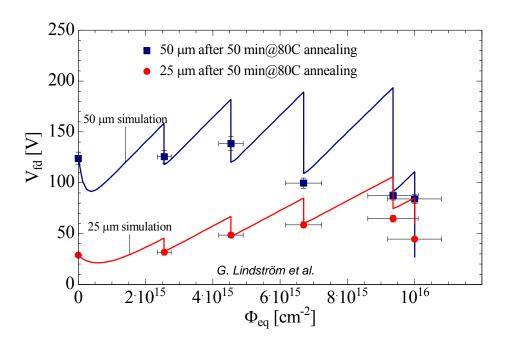
Mixed irradiations (III) - CCE

 Φ =4.81e14 p cm⁻² + 2e14 n cm⁻² (half of the SLHC fluence for short-strip region r=30 cm)

The V_{fd} evolution from C-V is confirmed in CCE!

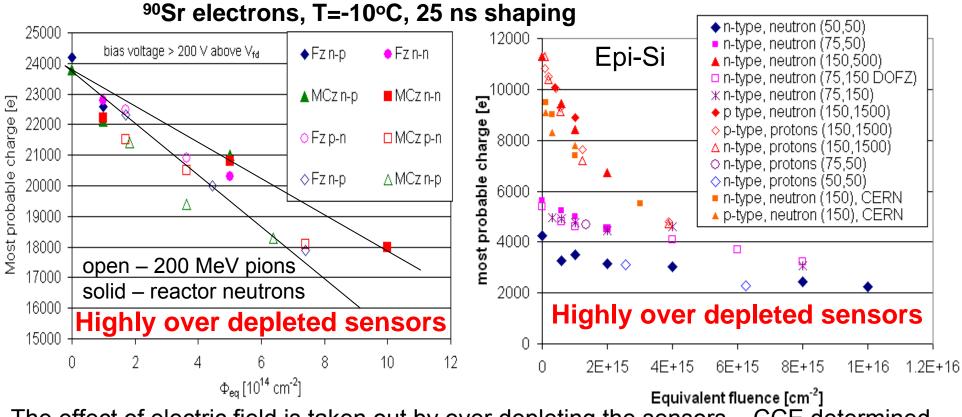
- •For MCz-n the V_{fd} is always better than after p-only
- •MCz-p it seems that reverse annealing gets "delayed" with fluence

At fluence of Φ_{eq} =9e14 cm⁻² the full depletion voltage of MCz materials is below 500 V even if detectors are kept most of the time at room temperature.



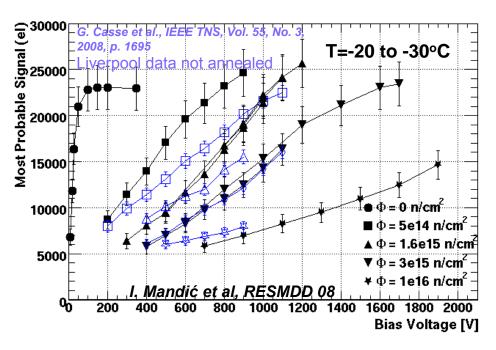
What are the benefits of epi/MCz!

Introduction of positive space charge for fast charged hadrons

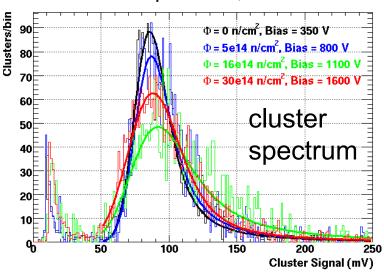

- © It enables to control the space charge
 - $|g_c|<|g_Y|$ with g_c and g_Y of opposite signs proper design of operation scenario can lead to compensation and reduction of V_{fd}
- There are other benefits from long term annealing of detectors:
 - Smaller leakage current
 - Longer trapping times from electrons

warm CERN scenario (50 min @ 80°C) experiment

Charge collection efficiency (epi/MCz/Fz)



The effect of electric field is taken out by over depleting the sensors – CCE determined by trapping only:


- •within the error margin all materials behave the same!
- •CCE for Epi-Si up to 2-3e15 cm⁻² agrees with predictions (not shown here)
- •pions are at the same Φ_{eq} ~20% more damaging than neutrons
- •at large fluences the thick and thin detectors come together in terms of collected charge.

CCE measurements for strip Fz/MCz detectors up to 1e15 cm⁻² show good agreement with diodes!

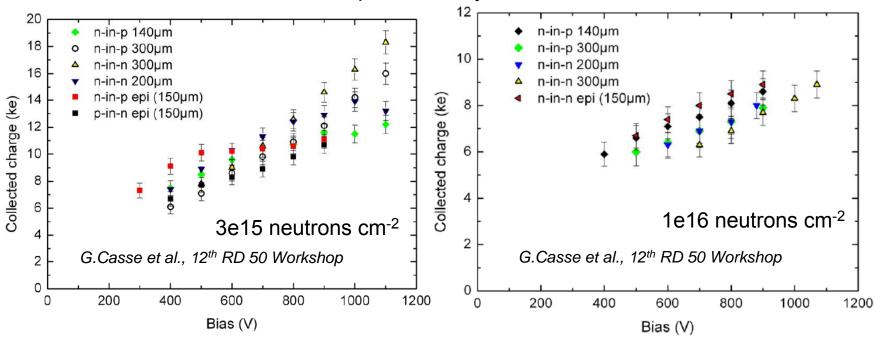
Measurements with FZ n⁺-p strip detectors

SCT 128A, 25ns, ⁹⁰Sr electrons detector FZ-p Micron, n irradiated

CCE~100% at 3e15 cm⁻², CCE~60% at 1e16 cm⁻²

To explain the measurements there should be:

- No trapping (but we do see it with pad detectors)
- g_c should be far from measured expected V_{fd} (3e15cm⁻²)=3500 V, measured from CCE~1400 V! Un-depleted bulk is highly resistive-> some field exits at $V < V_{fd}$ which enables the drift. But also true for operation in forward bias mode where CCE<<100%

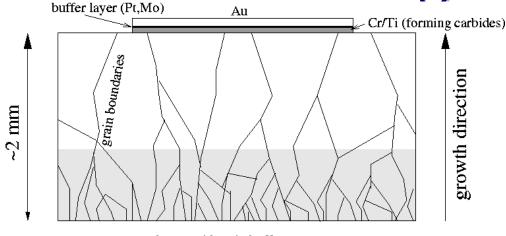

It is better to have high charge collection efficiency and not understand it, than know exactly why is it too low for successful operation...

Measurements with FZ/Epi n*-p strip detectors

SCT 128A, 25ns, ⁹⁰Sr electrons Detectors processed by Micron, neutron irradiated

If you are limited with bias to ~500-600 V thin epi-Si is slightly better than thick at very high fluences. Nevertheless 6-8 ke can be collected at 1e16 cm⁻².

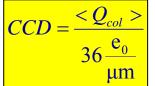
Diamond detectors


Property	Diamond	Silicon	
Band gap [eV]	5.5	1.12	© Low leakage
Breakdown field [V/cm]	10 ⁷	3x10 ⁵	
Intrinsic resistivity @ R.T. [Ω cm]	> 1011	2.3x10 ⁵	
Intrinsic carrier density [cm-3]	< 103	1.5x10 ¹⁰	
Electron mobility [cm²/Vs]	1900	1350	
Hole mobility [cm²/Vs]	2300	480	
Saturation velocity [cm/s]	0.9(e)-1.4(h)x 10 ⁷	0.82x 10 ⁷	
Density [g/cm³]	3.52	2.33	7
Atomic number - Z	6	14	
Dielectric constant - ε	5.7	11.9	© Low capacitance
Displacement energy [eV/atom]	43	13-20	© Radiation hard
Thermal conductivity [W/m.K]	2000	150	⊕ Heat spreader
Energy to create e-h pair [eV]	13	3.61	
Radiation length [cm]	12.2	9.36	
Spec. Ionization Loss [MeV/cm]	4.69	3.21	
Aver. Signal Created / 100 µm [e ₀]	3602	8892	⊗ Low signal
Aver. Signal Created / 0.1 X ₀ [e ₀]	4401	8323	

G. Kramberger, "New Sensor Materials", Detector Developments for the sLHC, Dresden, Oct. 2008

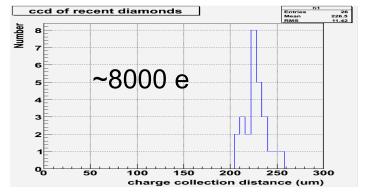
25

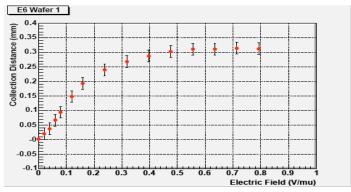
Diamonds basics (I)



- •Polycrystalline Chemical Vapour Deposition (pCVD)
 - •Exist in Φ = 12 cm wafers, >2 mm thick
 - •Grown in µ-wave reactors on non-diamond substrate
 - •Base-line diamond material for pixel sensor
- Single crystalline (scCVD)

substrate side grind off


11/13/2008


- No processing: put electrodes on, apply electric field
- Trapping on grain boundaries and in bulk
 - □ much like in heavily irradiated silicon
- Parameterized with Charge Collection Distance, defined by
- CCD = average distance e-h pairs move apart
- Coincides with trapping distance in infinitely thick detector ($CCD=\lambda$)

mean notmost probableUsually defined at 1 or 2V/μm

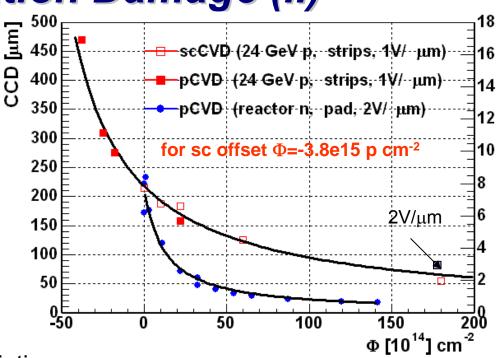
$$\lambda = \mu_e \tau_{eff,e} E + \mu_h \tau_{eff,h} E$$

G. Kramberger, "New Sensor Materials", Detector Developments for the sLHC, Dresden, Oct. 2008

Diamonds - Radiation Damage (I)

Radiation induced effect	Diamond	Operational consequence	Silicon	Operational consequence
Leakage current	small & decreases	none	$I/V = \alpha \Phi$ $\alpha \sim 4x10^{-17} \text{ A/cm}$	Heating Thermal runaway, shot noise
Space charge	~ NO/YES (polarization)	None/moderate increase of bias	$\Delta N_{eff} \approx -\beta \Phi$ β ~ 0.15 cm ⁻¹	Increase of full depletion voltage
Charge trapping	Yes	Charge loss Polarization	$1/\tau_{\rm eff} = \beta \Phi$ β ~ 5-7x10 ⁻¹⁶ cm ² /ns	Charge loss Polarization

- Charge trapping the only relevant radiation damage effect
 - * NIEL scaling questionable a priori , NIEL an order of magnitude smaller than in Si
- \bullet E_{gap} in diamond 5 times larger than in Si
 - Many processes freeze out
 - > Typical emission times order of months
- Like Si at 300/5 = 60 K Boltzmann factor
 - > Lazarus effect?
 - > Time dependent behaviour
- A rich source of effects and (experimental) surprises!
- Even before the irradiation there are defects at grain boundaries which reduce the CCD -> priming/pumping (exposure to ionizing radiation) improves the CCE as it fills the traps


Diamonds - Radiation Damage (II)

Degradation of charge collection efficiency:

$$\frac{1}{\lambda} = \frac{1}{\lambda_0} + k \times \Phi$$

$$\downarrow \text{ thickness} >> \lambda$$

$$\frac{1}{CCD} = \frac{1}{CCD_0} + k \times \Phi = k(\Phi + \Phi_0)$$

Preliminary data of recent irradiations:

- □ scCVD (4) and pCVD (2) with PS 24 GeV: $k \sim 0.8 \times 10^{-18} \, \mu \text{m}^{-1} \text{cm}^{-2}$, ~same as old pCVD proton data
- \Box pCVD (2) with reactor neutrons up to 8x10¹⁵ n_{eq}/cm² (in 5 steps); $k \sim 3.7 \text{x} 10^{-18} \ \mu\text{m}^{-1}\text{cm}^{-2}$
- □ pCVD with PSI 200 MeV pions up to $6x10^{14}$ π/cm²; k~1- $3x10^{-18}$ μm⁻¹cm⁻² (hard to reach high fluences at PSI)

Diamonds - Radiation Damage (III)

For the most exposed sensors at SLHC (where diamond is a contender) around 2000 e which is less than in Si, but ...

- Diamonds don't need cooling to low temperatures (much smaller X₀) maybe more space points per layer
- Break down voltage is very high, higher bias than 1000 V will make some difference
- Noise is smaller (leakage + capacitance)

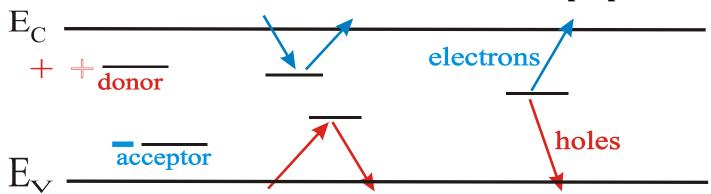
Readout (FE-I3)	Diamond	Planar-Si
Pixel noise	140e	180e
Threshold	1500e	2300e
In time treshold	2300e	3600e

3D-Si sensors may require up to 7000e

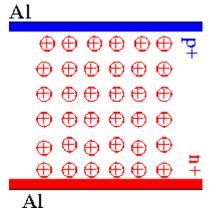
Conclusions

If one can tolerate voltages up to or more than 1000 V any detector with n⁺ readout gives enough charge to achieve desired signal. But,

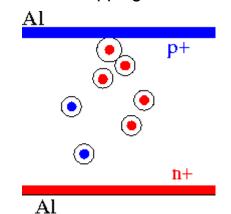
- •Stability of operation?
- •We should understand why CCE is so high!


If we want to limit the bias voltage to values significantly below 1000V ...

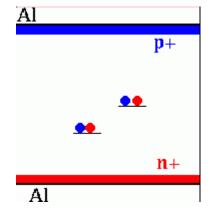
- r=4-12cm cm (2e15-1.6e16 cm⁻²) Epi-p with proper running scenario is a candidate as the trapping renders thickness unimportant. Diamond should be also considered small X₀ is crucial for vertexing. Innermost layer may need replacement.
- r=12-25 cm (1-2e15 cm⁻²) the composition of neutrons to charged hadrons is such that compensation and proper running scenario (annealing)would be large and V_{fd} could be kept <500 V with MCz-n, Epi-p (thickness?) and maybe also with MCz-p.
- r>25-60 cm (5e14-1e15 cm⁻²) the damage is more and more dominated by neutrons.
 - □ MCz-p (Epi-p suffers from smaller thickness) is the best candidate particularly for Micron process.
- r>60 cm (<5e14 cm⁻²) Fz n⁺-p or MCz n⁺-p or even present detectors.


Basics of radiation damage (II)

Influence of defects on the material and device properties


charged defects

⇒ N_{eff} , V_{dep} e.g. donors in upper and acceptors in lower half of band gap


Trapping (e and h) ⇒ CCE

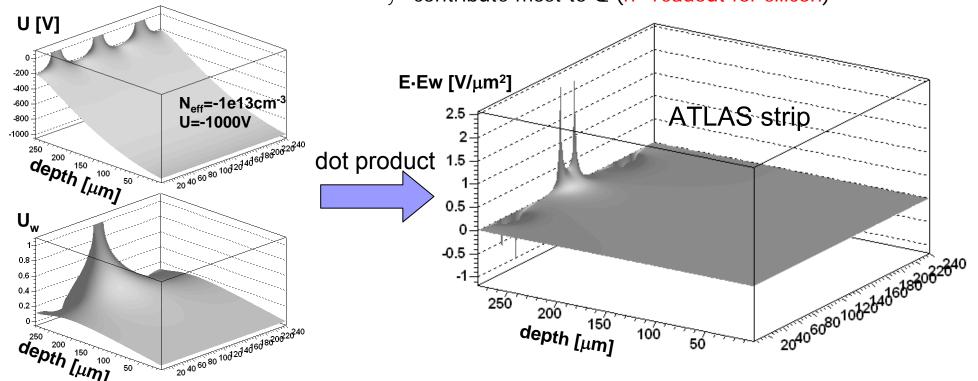
shallow defects do not contribute at room temperature due to fast detrapping

generation

⇒ leakage current Levels close to midgap most effective

Drift equation -signal

$$Q(t) = \sum_{e-h \ pairs} \int_{t=0}^{t_{\rm int}} I dt = \sum_{e-h \ pairs} q \int_{t=0}^{t_{\rm int}} \exp(-\frac{t}{\tau_{eff,e,h}}) \mu_{e,h} \vec{E} \cdot \vec{E}_w dt \qquad \begin{array}{c} U_w = 1 \\ U_w = 0 \end{array} \longrightarrow \text{sensing electrode}$$


11/13/2008

Weighting field

$$\Delta U_w = 0$$

 $U_{w} = 0$ \longrightarrow all other electrodes

- •trapping term ($\tau_{eff,e} \sim \tau_{eff,h}$) •electrons get less trapped •they should drift to the strips/pixels and contribute most to Q (n+ readout for silicon)

