

New detector concepts and developments

"How to manage charge trapping"

R. Bates University of Glasgow

With special thanks to: A. Affolder (Liverpool) : Silicon Strip results M. Mathes (Bonn) : 3D testbeam analysis H. der Graaf (NIKHEF) : GOSSIP plus many ATLAS & RD50 colleagues

Contents:

- Strip detectors
 - •P-type bulk devices
 - MCN_d post-processing
 - •Won't mention thin silicon detectors
- 3D silicon detectors

Fluence in Proposed sATLAS Tracker

Mix of neutrons, pions, protons depends on radius R

Long and short strips damage largely due to neutrons

Pixels damage due to neutrons and pions

ATLAS Radiation Taskforce http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/RADIATION/RadiationTF_document.html

Design fluences for sensors (includes 2x safety factor) :Innermost Pixel Layer: $1.6*10^{16} n_{eq}/cm^2 = 500$ MradOuter Pixel Layers: $3*10^{15} n_{eq}/cm^2 = 150$ MradShort strips: $1*10^{15} n_{eq}/cm^2 = 50$ MradLong strips: $4*10^{14} n_{eq}/cm^2 = 20$ Mrad

Need to study effect of <u>both</u> neutral (neutrons) and charged (proton) particle irradiations

19/10/2008

Charge trapping $Q_{e,h}(t) = Q_{0e,h} \exp\left(-\frac{1}{\tau_{eff\ e,h}} \cdot t\right) \qquad \text{where} \qquad \frac{1}{\tau_{eff\ e,h}} \propto N_{defects} = \beta_{e,h} \Phi$

 $\beta_e = 4.2 \times 10^{-16} \, cm^{-2} \, / \, ns, \quad \beta_h = 6.1 \times 10^{-16} \, cm^{-2} \, / \, ns$ From G. Kramberger et al., NIMA 476(2002), 645-651.

 $1/\tau$ changes with annealing

p-type strip detector

n⁺ implants in a p⁻ bulk

P-strip vs. N-strip Readout

Type inversion turns lightly doped material to "p" type

- Holes collected
- Deposited charge cannot reach electrode
 - Charge spread over many strips
 - Lower signal

- Electron collected
 - Higher mobility and ~33% smaller trapping constant
- Deposited charge can reach electrode

Silicon detector geometry choices

Development of surface treatment for n-in-p

- p-stop better before irradiation
 - Local, high concentration doping
 - Limits feature size
- p-spray better after irradiation
 - Uniform, lower concentration doping
- Moderated p-spray (combination of the above two)
 - Use a variable oxide thickness to change the boron doping

Measured V_{BD} on CNM devices

Technology	V _{BD} (V)	Std. error (V)	
p-stop	400	± 15	
p-spray	460	± 30	
Moderate (228 nm)	370	± 40	
Moderate (260 nm)	530	± 10	
Moderate (290 nm)	310	± 10	

Simulation of V_{BD} as a function of the p-spray dose

7

Irradiation Studies

A. Affolder, presented at PSD8, to be published NIMA

- Betterenthar年2551100-p4的子區以伸受地であるisses的多级的感觉的時间的alext75020ge collection for
 sl@60399956118946ini\$*((85月-10-14)ndetext6)rs fine for short strip regions
- In-Mestituzijoni Mapzrezy, eshidini her folklig selitive to birted by the provident of the second set of the second s
- n-in-p MC basteolivseb (estsparfdravanilate itisy) expected from CV measurements

Annealing

Starting detector:

CNM miniature p-type 80µm pitch 280µm thick strip detector 23GeV proton irradiation

- V_{fd} increases from 420V to 1900V
- Signal remains constant with annealing time at "low" bias
- Signal limited by trapping not depleted thickness of silicon

G. Casse et al. NIMA

MCN_d

Multi-chip module – deposited

Goal and technology description

- Replace hybrid with circuit deposited directly on silicon wafer.
 - Use dielectric (BCB) and metal layers (Cu)
 - Achieve a higher level of integration
- Feature sizes
 - Lithographic resolution: 10 μm, recommended: 30 μm
 - Dielectric layer thickness: 3-15 µm
 - Metal layer thickness: 1 µm
 - Approx^{ly} one order of magnitude smaller than standard PCB.
- Study:
 - Influence of BCB on sensor's shape, IV, CV, CCE.
 - Influence of ground plane on sensor
 - Technology issues quality, bondability, solderability, (flip-chipable)
- Prototype runs with Acreo, Sweden (<u>http://www.acreo.se/</u>)
 - First devices in Glasgow this week

Cross section of the first run

3D silicon sensor

Electrodes/implants penetrate the bulk normal to the surface

3D detectors

- Maximum drift and depletion distance governed by electrode spacing
 - Lower depletion voltages, $V \propto W^2$
 - Radiation hardness
 - Fast response
 - Active edges: same technology dope edges of sensor for edgeless detection efficiency
 - At the price of more complex processing
 - Narrow dead regions at wells

Unit cell defined by e.g. hexagonal array of electrodes

19/10/2008

Richard Bates

3D design family

- Single Sided Single Type Columns (semi-3D)
- Double Sided Double Type Columns (double-sided 3D)
- Single Sided Double Type Columns (full 3D)
- Full 3D Invented in 1997 S. Parker, C. Kenney, J. Segal
 First produced in 1999 Stanford Nanofabrication facility

Nucl. Instr. Meth. A, vol. 395, 328, 1997

- Recent development: R&D towards experimental use
 - Improvements in micromachining make larger-scale, reliable production more feasible. Semi-industrial and industrial production has started: CNM/FBK/Sintef
 - Simplified structure: Double Sided, G. Pellegrini et al.

IEEE Trans. Nucl. Sci, vol. 54, no. 4, Aug. 2007 *Nucl. Instr. Meth. A*, vol. 592 (1), July 2008

3D detector: processing

Non Standard Processing: Wafer bonding, Deep reactive ion etching , Low pressure chemical vapor deposition, Metal deposition → Mass production expensive but progressing

1) ETCHING THE ELECTRODES

DEEP REACTIVE ION ETCHING (electrodes definition) Bosh process SiF₄ (gas) +C₄F₈ (teflon) 260µm

15μm 15.09μm 16.09μm 12.45μm 13μm

WAFER BONDING (mechanical stability) Si-OH + HO-Si -> Si-O-Si + H₂O

Aspect ration up to 25:1 Depends on processor

SINTEF

IceMOS Tech Ltd

Richard Bates

3D detector: processing

Stanford

2) FILLING THE ELECTRODES

Optimisation of ATLAS 3D structure

Testbeam results

- Final analysis of the data taken end of October 2006
 - 3D-3E from Standford, 208 µm thick
 - 3D-3E (~3.2M raw events)
 - Tuning: Threshold 3000e, 30TOT@10ke
 - Angular scan (0°, 15°)
 - Bias scan (5V to 25V)
- Reference System
 - BAT-Telescope
 - Beam divergence <2mrad
 - Beam incidence angle known within ±1°
 - Hit prediction precision in the DUT 4-5µm

M. Mathes (Bonn) ATLAS 3D pixel collaboration 19/10/2008 *Bonn Telescope & analysis* 4k e threshold: Saturation at 5V

Richard Bates

Aug 06 & Oct 07, H8 CERN 100 GeV/c pions ATLAS 3D pixel collaboration

Testbeam results; 0° rotation

Charge distribution for hits in the 3D module

- Measured: MPV 15800e, FWHM 6800e
- Expected (208µm): MPV 16000e, FWHM 6200e
- Agrees perfectly within the ToT calibration uncertainty of 5-9%
- Population of entries at small charges indicate charge losses

Testbeam results; 15° rotation

- Efficiency for inclined track of $15^{\circ} = 99.9\% \pm 0.1\%$
- Lowest detected charge for 15° is 5000e
- No comfortable distance to threshold of 3000e

Paper just accepted by IEEE TNS for publication "Testbeam Characterization of 3D Silicon Detectors" preprint at arXiv:0806.3337

Resolution

- Centre of pixel with highest charge entry taken as reconstructed position
- Fit (rectangular function convoluted with Gaussian)
- 50 μm direction: width (49.4±0.1)μm, sigma (4.8±0.1)μm
- 400 μm direction: width (398.0±0.3)μm, sigma (6.4±0.2)μm
- Structure visible results from position depended efficiency
 Richard Bates

Double-sided 3D detectors

- Alternative 3D structure proposed by G. Pellegrini (CNM)
- N- and p-type columns etched from opposite sides of substrate
 - Columns do not pass through full substrate thickness
 - 250µm deep in 300µm substrate, for first run

DS Strip detector MIP test setup

- Tested with ⁹⁰Sr beta source
- LHCb electronics (Velo, Si tracker)
- Beetle readout chip
 - 40MHz readout rate
 - Analogue readout
- TELL1 readout board
- Strip detector is DC coupled
 - Added RC network chip to connect irradiated sensor to Beetle
 - Thanks to Jaakko Härkönen, Helsinki
 - R = 1 M Ω , C = 67 pF

Charge collection in irradiated strips

- Strip detector irradiated to 5*10¹⁵n_{eq}/cm² with reactor neutrons at Ljubljana
- When cooled, detector could be biased to 200V
- System calibrated with unirradiated, AC coupled n-in-p planar detector

• 12.8keV signal

Summary of performance

Summary of performance

- For present ATLAS pixel R/O
 - Signal > 2 x In-time threshold
 - Present FE-I3, In-time threshold ≈ 4000e for Si planar pixel

Need to optimize FEE

19/10/2008

Marginal performance for innermost Pixel Layer

Other ideas

- Thin detectors and Vertical integration
 - Thin planar pixel sensors have reduced sensitive thickness
 - Lower depletion voltage
 - Lower currents
 - Lower signal requires lower noise/capacitance to get S/N
 - New interconnect technology vertical integration
- GOSSIP
 - Gas volume above a CMOS ASIC with MEMS GEM
 - Demonstrated with CMOS pixel ASIC & Medipix/Timepix
 - Low power consumption, RT operation, no radiation reduction in charge collection
 - Possible aging concerns

Thin Sensors and Vertical Integration

Solid Liquid Interdiffusion (SLID), IZM Munich

R. Nisius

Conducted by: Bonn, Dortmund, MPI, Oslo, Interon, IZM 19/10/2008 Richard Bates

- 1) Low I_leak, low V_dep
- 2) Large live-fraction
- 3) SLID interconnection
- 4) 3D integration

Gossip – Nikhef R&D

- Can Gossip be a realistic alternative for ID/pixel area at SLHC?
 - Gossip:
 - Generate charge signal in gas instead of Si (e-/ions versus e-/holes)
 - Amplify # electrons in gas (electron avalanche versus FET preamps)
 - Then:
 - No radiation damage in depletion layer or pixel preamp FETs
 - No power dissipation of preamps
 - No detector bias current
- Demonstrated with CMS Pixel ASICs
 - Possible showstoppers
 - Aging
 - HV breakdown

H. der Graaf (NIKHEF)

Summary

- Challenges of sLHC for silicon detectors outlined
- Strip detector solution shown
 - n-in-p detector
 - Fz or MCz still under investigation
 - Detailed design focus of ATLAS groups
- One possible solution for the 1st Pixel layer shown
 - 3D detectors
 - Higher charge than other proposed solutions
 - But higher capacitance
 - Problem still requires work!

Interesting talks

- Planar detectors
 - G. Casse, Liverpool: "Studies on Charge Collection Efficiencies for Planar Silicon Detectors after Doses up to 10e16 Neq/cm2 and the Effect of Varying Substrate Thickness" session N54 – Thursday
 - H. Sadrozinski, SCIPP: "CCE and its annealing in silicon detectors irradiated with pions, protons, and neutrons" session N15 – Tuesday.
 - K. Hara, Tsukuba: "Characteristics of the irradiated Hamamatsu p-bulk silicon microstrip sensors" session N19 – Tuesday.
- 3D
 - D. Pennicard, Glasgow: "Radiation hardness tests of double-sided 3D detectors" session N19 Tuesday.
 - S. Kuhn, Freiburg: "Investigation of 3D silicon microstrip detectors for the sLHC" session N19 - Tuesday.
 - A. Zoboli, FBK: "Functional characterisation of 3D-DDTC Detectors" session N34 – Wednesday.
 - J. Kalliopuska, VTT: "Fabrication of edgeless 3D strip and pixel detectors using SOI wafers" session N34 – Wednesday.

Back-up slides

- 35. How to overcome CCE loss
- 36. Double junction
- 37. Signal from a detector
- 38. Irradiated CNM strip detector noise f(Bias)
- 39. CCE annealing (1.1 10¹⁵ p cm⁻²)
- 40. CCE annealing (7.5 10¹⁵ p cm⁻²)
- 41. MCN_d GND plane designs
- 42. B-layer upgrade
- 43. ATLAS FE-I4
- 44. Comparing double-sided to full 3D
- 45. Double-sided 3D CV
- 46. Double-sided 3D strip IV
- 47. CCE full 3D and DC
- 48. 3D fabrication at SINTEF

- 49. 3D Manchester results
- 50. 3D at VTT
- 51. 3D at FBK
- 52. 3D R&D summary slide
- 53. 3D R&D institutes
- 54. GOSSIP detector design
- 55. GOSSIP design cont.
- 56. GOSSIP Full post-processing of a TimePix
- 57. Tracking sensor material: gas versus Si
- 58. SiProt protection
- 59. SiProt protection cont.
- 60. GOSSIP aging
- 61. GOSSIP on CMS Pixel R/O

How to overcome CCE loss

- Short n-in-p strips
 - Collects more charge than p-in-n after high fluence \checkmark
 - Cheaper than n-in-n ✓
 - Reduce noise as much as possible
- Thin detectors
 - Short drift distances \Rightarrow less trapping \checkmark
 - Higher E-fields (but at saturation drift velocity)
 - Limited initial charge! X
- 3D detectors
 - Very close packed electrodes through device
 - Short collection distances with full MIP signal \checkmark
 - Complex, expensive, still very new X
 - \Rightarrow Pixel solution

Double Junction

In fact, post irradiation E-field has a double junction structure with a low field (nondepleted) bulk in the middle of the sensor for biases below the full depletion voltage.

See G. Casse, et. al., NIMA **426** (1999) 140-146 and G. Kramberger, et. al., NIMA **579** (2007) 762-765

Signal from a detector

Signal collected given by

$$\mathbf{Q} = \mathbf{Q}_{o} \cdot \boldsymbol{\varepsilon}_{dep} \cdot \boldsymbol{\varepsilon}_{trap}$$
 $\boldsymbol{\varepsilon}_{dep} = \frac{d}{W}$ $\boldsymbol{\varepsilon}_{trap} = e^{-\frac{\tau_{c}}{\tau_{t}}}$

- W = device total thickness
- d = active thickness of device
- $-\tau_{c}$ = carrier collection time
 - $\mu_n = 1350 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$: $\mu_p = 480 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$
 - Typical conditions: 100V, W=300um E=3.3kVcm⁻¹
 - Drift velocity: e= 4.45x10⁶ cms⁻¹ & h=1.6x10⁶ cm⁻¹
 - Collection time: e=7ns, h=19ns
- $-\tau_t$ = carrier trapping time
 - ∞1/Φ

$$\tau_c = \frac{d}{v} = \frac{d}{\mu E}$$

 τ

P-type miniature detectors from CNM

Noise results with 280µm thick 1x1 cm⁻² miniature detector made by CNM. Remarkable robustness, after irradiation, both in term of breakdown voltage and noise. A value of about 34 ADC counts was the typical one measured with similar geometry standard ATLAS non-irradiated miniature sensors.

P-type miniature detectors from CNM

CCE annealing

(1.1 10¹⁵ p cm⁻²)

Initial $V_{FD} \sim 420V$ Final $V_{FD} \sim 1900V$

Richard Bates

P-type miniature detectors from CNM

Design Features – ground planes

26 sensors per wafer

- 4 w/o GND plane (only BCB)
- 4 solid GND plane
- 6 triangular GND plane
- 3 x 4 meshed GND planes

Final metallisation

- Open band in the passivation (top)
- Ni/Au coating
- Additional pad bottom/right corner

Meshed planes

- 30 µm line, 50% fill factor
- 30 µm line, 25% fill factor
- 80 µm line, 50% fill factor

19/10/2008

b-layer: Replacement \rightarrow Upgrade

- 2012: b-layer replacement (after ~3 years of full LHC luminosity)
- 2016: replace completely the ID with a fully silicon version for s-LHC
- The <u>B-layer replacement</u> can be seen as an intermediate step towards the full upgrade. Performance improvements for the detector (here some issues more related to FE chip):
 - **Reduce radius** \rightarrow Improve radiation hardness
 - 3D sensors, or possibly, thin planar detectors, epitaxial, diamond, gas, ...?
 - Reduce pixel cell size and architecture related dead time
 - design FE for higher luminosity, use 0.13 µm 8 metal CMOS
 - Reduce material budget of the b-layer
 - $\sim 3\% X_0 \rightarrow 2.0 \div 2.5\% X_0$
 - increase the module live fraction
 - increase chip size, > 12×14 mm², possibly use "active edge" technology for sensor.
 - Use faster R/O links
 - move MCC to the end of the stave
- The <u>B-layer for the s-LHC</u>
 - radiation hardness: $10^{15} \rightarrow 10^{16} n_{eq}/cm^2$
 - detector occupancies up by 15 times

New Pixel FE-ASIC

- Design of a new Front-End chip (FE-I4) as a Collaborative Work of 5 Labs: Bonn, CPPM, Genova, LBNL, Nikhef
- FE-I4 tentative schedule
 - 9/2007: Architecture definition
 - 10/2007: Footprint frozen
 - 01/2008: Initial Design review
 - 12/2008: Final Design review
- Some prototype silicon made of small blocks and analog part of the pixel cell in 0.13 µm.

Main Parameter	Value	Unit
Pixel size	50 x 250	μm^2
Input	DC-coupled negative	
	polarity	
Normal pixel input	300Ö 5 00	fF
capacitance range	\frown	
In-time threshold	4000	e
with 20ns gate		
Two-hit time	400	ns
resolution		
DC leakage current	100	nA
tolerance	\frown	
Single channel ENC	300	e
sigma (400fF)		
Tuned threshold	100	e
dispersion		
Analog supply	10	μA
current/pixel		
@400fF		
Radiation tolerance	200	MRad
Acquisition mode	Data driven with time	
	stamp	
Time stamp	8	bits
precision		
Single chip data	160	Mb/s
output rate		

FE-I4 (B-layer Replacement) Specifications: main parameters

Richard Bates

Comparing double-sided to full 3D

CV

Lateral depletion around column (~2V in sim.)

• Pad detector – 90 * 90 columns, 55µm pitch

Depletion to back surface from tip of column (~8V in sim.)

19/10/2008

Richard Bates

Strip detector IV

- 128 strips, 50 holes/strip, pitch 80µm, length 4mm
- Measured with 3 strips and guard ring at 0V, and backside biased
- Strip currents ~100pA (T=21°C) in all 4 detectors
- Can reliably bias detectors to 50V (20 times lateral depletion voltage), no breakdown
- Capacitance 5pF / strip
- Guard ring currents vary:
 - Highest 20µA at 10V
 - Lowest 0.03µA at 50V

19/10/2008

Comparison with other 3D detectors

- Signal from Stanford 3D Cinzia da Via (Manchester) NSS '07
 - 250µm columns in 250µm p-type substrate, n+ readout
 - Electrode spacings (indicated) are compatible with ATLAS pixels
- CNM strip results are similar

Hawaii/Stanford/Manchester + SINTEF Sherwood Parker, Cinzia DaVia et al.

Semi-industrial production full 3D

 Polysilicon filling and boron doping performed at Stanford

Good hole etching performance
ATLAS 3D pixel produced

Wafer bowingVoids in filling

Hawaii/Stanford/Manchester cont..

Stanford fabricated devices

Most advanced radiation resultsResults for different pixel configurations

Fast timing applications
FP220 in ATLAS trigger

19/10/2008

VTT (Finland) Juha Kalliopuska et al.

Single Sided Single Type (semi-3D)

- Large area strip and pixel detectors (~10 cm²)
 - Strip
 - Pixel with MediPix2
- Edgeless devices
- Plan full 3D run at end of 2008

19/10/2008

FBK (Trento)

19/10/2008

Maurizio Boscardin et al.

Richard Bates

R&D institutes

- Glasgow, Freiburg, CNM Barcelona (Centro Nacional de Microelectronica, Spain)
- Hawaii/Stanford/ Manchester + SINTEF
- FBK (prev. IRST), Trento
- VTT
- ATLAS 3D pixel upgrade collaboration
 - Institutes: Stanford, Manchester, Hawaii/LBL, New Mexico, Glasgow, Freiburg, Bonn, Praha, Genova, Oslo, FBK, CERN, CNM

Si (vertex) track detector

GOSSIP

- Si strip detectors
- Si pixel detectors
- MAPs
- CCDs

Gas: 1 mm as detection medium 99 % chance to have at least 1 e-Gas amplification ~ 1000:

Single electron sensitive

All signals arrive within 20 ns

Gossip [Gas On Slimmed Silicon Pixels] replacement of Si tracker

Essential: thin gas layer (1.2 mm)

19/10/2008

Richard Bates

Full post-processing of a TimePix

• Timepix chip + SiProt + Ingrid:

19/10/2008

Tracking sensor material: gas versus Si

- primary electrons can simply be multiplied: gas amplification: low power
- gas can be exchanged: no radiation damage of sensor
- no bias current: low power & simple FE circuits
- it is light and cheap
- gas has a low ϵ_r : with small voxels the source capacity can be small (10 fF) allowing fast, low-noise, and low-power preamps
- no temperature requirements
- low sensitive for neutron and X-ray background [and can detect < 1 keV quanta!]
- $\delta\text{-rays}$ can be recognized
- [high ion & electron mobility: fast signals, high count rates are possible]
- discharges/sparks: readout system should be spark proof
- ageing: must be solved and must be understood / under control
- diffusion: limits max. drift length

19/10/2008

Richard Bates

SiProt protection against:

- hot spark plasma
- too large charge in pixel circuitry [principle of RPCs]
 - local reduction of E-field: quenching
 - widening discharge funnel: signal dilution
 - [increased distance of 'influention']

SiProt: a low T deposited hydrogenated amorphous silicon (aSi:H) layer

Up to 50 μm thick films, ~ 10^7 - 10^{11} $\Omega.cm$

Richard Bates

Sparks

July 2008: protection layer made of Si_3N_4 (Silicon Nitride), only 7 µm thick $3 SiH_4 + 4 NH_3 \rightarrow 3 Si_3H_4 + 6 H_2$

Silicon Nitride is often applied as passivation layer: top finish of chips.

With overdose of SiH₄:conductivity: high resistively bulk material

Favoured material for bearings in turbo chargers, jet engines

The application of SiNProt and InGrid on CMOS chip is likely to become a standard, low cost procedure by industry [compare bump-bonding of Si sensors & processing Si sensors]

19/10/2008

Ageing

Radiation damage of CMOS pixel chip is relevant

- common for all tracking detectors
- believed to widthstand ATLAS Upgrade Dose in 90 nm technology

Radiation damage of sensor:

not relevant for Gossip sensor since this is gas being exchanged

Typical for gaseous detectors: the deposit of an (insulating) polymer on the electrodes of a detector. Decrease of signal amplitude

Little ageing expected:

- little primary ionisation (~ 10 e-/track)
- low gas gain (500 1000)
- large anode surface (compare pixel anode plane with surface of thin wire)
- E-field at flat anode ~3 lower than E-field at anode wire

GOSSIP-Brico: PSI-46 (CMS Pixel FE chip)

First prototype of GOSSIP on a PSI-46 (CMS Pixel FE chip) is working:

- 1.2 mm drift gap
- Grid signal used as trigger
- 30 µm layer of SiProt

