4th Trento Workshop on Advanced Detectors, 17 February 2009

RD50 studies on radiation induced microscopic disorder

Mara Bruzzi

Dip. Energetica, University of Florence, INFN Firenze, Italy

on behalf of RD50

http://www.cern.ch/rd50

Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

250 Members from 48 Institutes

41 European and Asian institutes

Belarus (Minsk), Belgium (Louvain), Czech Republic (Prague (3x)), Finland (Helsinki), Germany (Dortmund, Erfurt, Freiburg, Hamburg, Karlsruhe, Munich), Italy (Bari, Bologna, Florence, Padova, Perugia, Pisa, Torino, Trento), Lithuania (Vilnius), Netherlands (NIKHEF), Norway (Oslo (2x)), Poland (Warsaw(2x)), Romania (Bucharest (2x)), Russia (Moscow, St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona, Valencia), Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Glasgow, Lancaster, Liverpool)

8 North-American institutes

Canada (Montreal), USA (BNL, Fermilab, New Mexico, Purdue, Rochester, Santa Cruz, Syracuse)

> **1 Middle East institute** Israel (Tel Aviv)

Detailed member list: http://cern.ch/rd50

Scientific Organization of RD50

RD50

Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

RD50 Signal degradation for LHC Silicon Sensors

Pixel sensors: max. cumulated fluence for LHC 25000 FZ Silicon signal [electrons] Strip and Pixel Sensors 20000 • n-in-n (FZ), 285µm, 600V, 23 GeV p ▲ p-in-n (FZ), 300µm, 500V, 23GeV p 15000 \triangle p-in-n (FZ), 300µm, 500V, neutrons n-in-n FZ (600V) p-in-n-FZ (500V) pixel sensors References: strip sensors [1] p/n-FZ, 300µm, (-30°C, 25ns), strip [Casse 2008] [2] n/n-FZ, 285µm, (-10°C, 40ns), pixel [Rohe et al. 2005] 10000 5000 10¹⁶ 10¹³ 5 10¹⁴ 5 1015 5 M.Moll - 08/2008 $\Phi_{\rm eq} \, [{\rm cm}^{-2}]$ **Strip sensors:** max. cumulated fluence for LHC

RD50 Signal degradation for LHC Silicon Sensors

RD50 <u>Reminder</u>: Radiation Damage in Silicon Sensors

- **Two general types of radiation damage to the detector materials:**
- Bulk (Crystal) damage due to Non Ionizing Energy Loss (NIEL) - displacement damage, built up of crystal defects –
 - I. Change of effective doping concentration (higher depletion voltage, under- depletion)
 - **II.** Increase of leakage current (increase of shot noise, thermal runaway)
 - **III.** Increase of charge carrier trapping (loss of charge)
- Surface damage due to Ionizing Energy Loss (IEL)
 - accumulation of positive in the oxide (SiO₂) and the Si/SiO₂ interface affects: interstrip capacitance (noise factor), breakdown behavior, ...
- Impact on detector performance and Charge Collection Efficiency (depending on detector type and geometry and readout electronics!)

Signal/noise ratio is the quantity to watch ⇒ Sensors can fail from radiation damage !

Radiation - Induced Defects

Earlier simulation works: [Mika Huhtinen NIMA 491(2002) 194]

10 MeV protons 24 GeV/c protons 1 MeV neutrons Initial distribution of vacancies after **10¹⁴ particles/cm²**

RD50 Impact of Defects on Detector properties

RD50 approaches to develop radiation harder tracking detectors

- <u>Material Engineering -- Defect Engineering of Silicon</u>
 - Understanding radiation damage
 - Macroscopic effects and Microscopic defects
 - Simulation of defect properties & kinetics
 - Irradiation with different particles & energies
 - Oxygen rich Silicon
 - DOFZ, Cz, MCZ, EPI
 - Oxygen dimer & hydrogen enriched Silicon
 - Influence of processing technology
- Material Engineering-New Materials (work concluded)
 - Silicon Carbide (SiC), Gallium Nitride (GaN)
- <u>Device Engineering (New Detector Designs)</u>
 - p-type silicon detectors (n-in-p)
 - thin detectors
 - 3D detectors
 - Simulation of highly irradiated detectors
 - Semi 3D detectors and Stripixels
 - Cost effective detectors
- Development of test equipment and measurement recommendations

Available Irradiation Sources in RD50

- 24 GeV/c protons, PS-CERN
- 10-50 MeV protons, Jyvaskyla +Helsinki
- **Gast neutrons, Louvain**
- **26 MeV protons, Karlsruhe**
- **TRIGA reactor neutrons, Ljubljana**

RD50 Silicon Materials under Investigation

standard for	Material	Thickness [µm]	Symbol	ρ (Ωcm)	[O _i] (cm ⁻³)
detectors (Standard FZ (n- and p-type)	50,100,150, 300	FZ	1-30×10 ³	< 5×10 ¹⁶
	Diffusion oxygenated FZ (n) and p-type)	300	DOFZ	1-7×10 ³	~ 1-2×10 ¹⁷
used for LHC	Magnetic Czochralski Si, Okmetic, Finland (n- and p-type)	100, 300	MCz	~ 1×10 ³	~ 5×10 ¹⁷
Pixel detectors	Czochralski Si, Sumitomo, Japan (n-type)	300	Cz	~ 1×10 ³	~ 8-9 ×10 ¹⁷
"new"	Epitaxial layers on Cz-substrates, ITME, Poland (n- and p-type)	25, 50, 75, 100,150	EPI	50 - 100	< 1×10 ¹⁷
silicon material	Diffusion oxyg. Epitaxial layers on CZ	75	EPI-DO	50 - 100	~ 7×10 ¹⁷

- DOFZ silicon
- Enriched with oxygen on wafer level, inhomogeneous distribution of oxygen
- CZ/MCZ silicon
- high Oi (oxygen) and O_{2i} (oxygen dimer) concentration (<u>homogeneous</u>)
 formation of shallow Thermal Donors possible

• Epi silicon

- high O_i, O_{2i} content due to out-diffusion from the CZ substrate (inhomogeneous)
 thin layers: high doping possible (low starting resistivity)
- Epi-Do silicon
- as EPI, however additional O_i diffused reaching <u>homogeneous</u> O_i content

Mara Bruzzi on behalf of the RD50 CERN Collaboration – , 4° Workshop on Advanced detectors, Trento, February 17, 2009 -10-

RD50 Earlier Works: γ Co⁶⁰ irradiation

2003: To investigate only point defects; Main focus on differences between standard and oxygen enriched material and impact of the observed defect generation on pad detector properties.Beneficial oxygen effect consists in:

(a) suppressing deep acceptors responsible for the type inversion effect in oxygen lean material. So called I and Γ close to midgap acceptor like levels and are generated in higher concentrations in STFZ silicon than in DOFZ; (a) shallow donors (BD) creation as well;

Mara Bruzzi on benait of the KDSU CEKN Conaboration – , 4° Workshop on Advanced detectors, Trento, February 17, 2009 -11-

RD50 Proton irradiation: FZ, DOFZ, Cz and MCz Silicon

- **Standard FZ silicon**
- **Oxygenated FZ (DOFZ)**
- **CZ silicon and MCZ silicon**
- Strong differences in internal electric field shape (type inversion, double junction,...)

• Different impact on pad and strip detector operation! 24 GeV/c proton irradiation (n-type silicon)

- reverse current increase • increase of trapping (electrons and holes) within ~ 20%
 - Mara Bruzzi on behalf of the RD50 CERN Collaboration , 4° Workshop on Advanced detectors, Trento, February 17, 2009 -12-

RD50 Earlier Studies - proton irradiated silicon detectors I

2004: Levels responsible for depletion voltage after 23 GeV proton irradiation:

Almost independent of oxygen content:

- Donor removal
- "Cluster damage" \Rightarrow negative charge

Influenced by initial oxygen content:

 deep acceptor level at E_C-0.54eV (good candidate for the V₂O defect)
 ⇒ negative charge

Influenced by <u>initial oxygen dimer</u> content (?):

 BD-defect: bistable shallow thermal <u>donor</u> (formed via oxygen dimers O_{2i})
 ⇒ positive charge

TSC after irradiation with 23 GeV protons with an equivalent fluence of 1.84×10^{14} cm⁻² recorded on Cz and Epi material after an annealing treatment at 600C for 120 min.

RD50 Earlier Studies - proton irradiated silicon detectors II

1) No TDs.

2) Shallow Donor close to 30 K peak (PF shift evidences its donor-like nature)

RD50 Earlier Studies - proton irradiated silicon detectors III

• 2005: Shallow donor generated by proton irradiation in MCz and Epitaxial silicon

Mara Bruzzi on behalf of the RD50 CERN Collaboration - , 4° Workshop on Advanced detectors, Trento, February 17, 2009 -15-

RD50 The WODEAN Project

- WODEAN project (initiated in 2006, 10 RD50 institutes, guided by G.Lindstroem, Hamburg)
 - Aim: Identify defects responsible for Trapping, Leakage Current, Change of N_{eff}
 - Method: Defect Analysis on identical samples performed with the various tools available inside the RD50 network:
 - •C-DLTS (Capacitance Deep Level Transient Spectroscopy)
 - •I-DLTS (Current Deep Level Transient Spectroscopy)
 - •TSC (Thermally Stimulated Currents)
 - •PITS (Photo Induced Transient Spectroscopy)
 - •FTIR (Fourier Transform Infrared Spectroscopy)
 - •RL (Recombination Lifetime Measurements)
 - •PC (Photo Conductivity Measurements)
 - •EPR (Electron Paramagnetic Resonance)
 - •TCT (Transient Charge Technique)
 - •CV/IV
 - ~ 240 samples irradiated with protons and neutrons
 - first results presented on 2007 RD50 Workshops, further analyses in 2008 and publication of most important results in in Applied Physics Letters

11 Institutes/Institutions Involved

CERN

Bucharest NIMP Florence University Hamburg University Ljubljana JSI London King's College Minsk University Minsk NAS Oslo University Warsaw ITME Vilnius University

RD50 Open problem: Clusters evaluation

- Most of the damage (95%) is in the large disordered regions (clusters).
- But 5 % is in small damage events (point defects), with have welldefined energy levels, so *can be measured accurately*.

- G. Davies, RD50 Workshop, Ljubljana, June 08

Mara Bruzzi on behalf of the RD50 CERN Collaboration - , 4° Workshop on Advanced detectors, Trento, February 17, 2009 -17-

RD50 Recent Literature on Defects in neutron irradiated silicon

 V_2 has two charge states at 0.24 and 0.43 eV below *Ec* corresponding to 135 K and 233 K transitions. A large 233 K peak is the hallmark of neutron-damaged silicon, related to clusters; electron irradiation, which produces more uniform displacement damage, shows two nearly equal peaks at 135 and 233 K.

Two bistable configurations of the defects.

- 1. either immediately after irradiation or after forward bias (12.5 A/cm² at 300 K for 20 min). Increase in the 233 K peak and appearance of the 195 K peak/shoulder. After neutron, but not electron irr., decrease in the shallow V_2 peak at 135 K.
- 2. after sample at 350 K for 60 min either shorted or reverse biased or after the sample has been at room temperature for months. Lower 233 K peak, a much lower 0.36 eV trap signature, and a larger shallow V2 peak (neutron irr.)

Change in the $V_2^{=/-}$ intensity (neutron irr.) explained as partial filling of the level due to band bending within a cluster.

R. M. Fleming, a C. H. Seager, D. V. Lang, E. Bielejec, and J. M. Campbell, APL, 90, 172105 2007

FIG. 1. DLTS of the base-collector diode of radiation damaged n-p-n transistors. The DLTS spectrum can be cycled between two limiting cases, a higher defect state (immediately after irradiation or after forward bias at 300 K) and a lower defect state (after zero or reverse bias at 350 K). (a) Fast neutrons and (b) 25 MeV electrons.

QUANTITATIVE EFFECTS OF NEUTRON IRRADIATION ON SILICON RADIATION DETECTORS

- Overview of results from the WODEAN* collaboration -

Eckhart Fretwurst

on behalf of the WODEAN collaboration

- <u>Material:</u> MCz-Si, <100>, n-type, 900 Ωcm Impurity concentration: [O] = 5.6·10¹⁷ cm⁻³, [C] ≤ 3·10¹⁵ cm⁻³
- <u>Irradiation:</u> Reactor neutrons (TRIGA-reactor, Ljubljana) Fluence range: 10¹¹ – 3·10¹⁶ cm⁻²

E. Fretwarst, University of Hamburg

1

IEEE Conference Dresden 21. October 2008

E. Fretwurst, University of Hamburg

IEEE Conference Dresden 21. October 2008

RD5 Bistability of E4/E5 correlated wit reverse current in neutron irradiated Si

Bistability of E4/E5

-**-**-I_a

24

22

18

0

(Yu) ^{dap} 20

1A-injection

annealing

50

concentration (cm⁻³

1.5x1011

1.2x10¹¹

9.0x10¹⁰

6.0x10¹⁰

3.0x10¹⁰

A. Junkes

0.0

-•- E5

annealing

150

1A-injection

A. Junkes

3

Procedure:

- Pre-annealing at 200 °C for 30min before injection
- Injection 1 A forward current for 20 min
- Annealing at 80 °C for 60 min

Bistability of E4/E5 correlated with change of reverse current I_{dep}

100

timeline (min)

First observation by R.M. Fleming et al., APL 90 (2007) 172105

E4/E5 can be totally recovered by injection of 1 A forward current

E. Fretwurst, University of Hamburg

IEEE Conference Dresden 21. October 2008

Mara Bruzzi on behalf of the RD50 CERN Collaboration - , 4° Workshop on Advanced detectors, Trento, February 17, 2009 -21-

Cluster related hole traps as source for long term annealing

Hole traps *H*116 K, *H*140 K, and *H*152K, cluster related defects (not present after γ irradiation) observed in neutron irradiated *n*type Si diodes during 80 °C annealing. To be observed by TSC it is necessary to deactivate C_iO_i , through filling with forward injection at very low initial temperature.

EPI-DO irradiated with Co⁶⁰-y, 300 Mrad dose

60

50

30

20

10.

0-80

TSC signal (pA)

Forward injection at:

20 K

30 K

40 K

50 K

60 K

80 K

BD 0/++

100

120

Temperature (K)

140

I. Pintilie, E. Fretwurst, and G. Lindström, APL 92, 024101 2008

(c)

-/0

180

160

Mara Bruzzi on behalf of the RD50 CERN Collaboration – , 4° Workshop on Advanced detectors, Trento, February 17, 2009 -22-

Hole traps *H*116 K, *H*140 K, and *H*152K concentration in agreement with Neff changes during 80 °C annealing, they are believed to be causing the long term annealing effects.

I. Pintilie, E. Fretwurst, and G. Lindström, APL 92, 024101 2008

Photoluminescence Spectroscopy

PL properties:

13

- Very high spectral resolution, typical 0.1 meV at 1000 meV
- More sensitive to I related defects than V related defects
- Extraction of concentrations difficult
- PL quenched by V-clusters or other defects

UH

Visible defects:

- C-line at 789 meV = C_iO_i
- W-line at 1018 meV = I₃, only seen after annealing at T > RT grows with annealing time
- Broad band: attributed to disordered region

E. Fretwurst, University of Hamburg

IEEE Conference Dresden 21. October 2008

FTIR: Difference spectra show formation of V₂O and V₃O in the range 200 °C - 275 °C transformation: V₂+O → V₂O V₃+O → V₃O

12

RD

DLTS: Spectra show formation of X- and L-center in the same temperature range ⇒ most likely X=V₂O L-center = ? Ratio [L]/[X] ≈ [V₃O]/[V₂O] from FTIR L increase correlates with E4/E5 decrease

UH

220°C 240°C

260°C

280°C

225

E4/E5 DLTS signals might be attributed to V₃ and L to V₃O

E. Fretwurst, University of Hamburg

IEEE Conference Dresden 21. October 2008

Fluence dependence – point defects

Results from FTIR:

- [VO] ~ fluence all single V's captured at O
 [V] << [O]
- [V₂] ~ fluence
 V₂ directly produced
- [C_iO_i] saturates
 C_iO_i indicator for I
 I+C_s→Si_s+C_i, C_i+O_i→C_iO_i,
 [I] >> [C_s]
- [I₂O] ~ fluence expected like [V₂]
 I₂O anneals during irradiation,
 T_{irr} = 62 °C
- [V₃] ~ fluence ? only data after 3x10¹⁶ cm⁻² available

F (1) 1]	•	1	/ 3		
Introduction rate	S 111	cm-1	(prei	mman	1
		•···	VP / 01	, manuary j	/

Method	VO	V2	I ₂ O	V ₃
FTIR as irradiated	0.22	0.19	~ 0.3	~ 0.1 after 200 °C
DLTS after 200 °C	0.73	0.37	-	~ 0.19

E. Fretwurst, University of Hamburg

IEEE Conference Dresden 21. October 2008

13

Summary – defects with strong impact on the device properties at operating temperature

RD50

I.Pintilie, NSS, 21 October 2008, Dresden

Summary – defects with strong impact on the device properties at operating temperature

RD50

I.Pintilie, NSS, 21 October 2008, Dresden

Conclusions

The study of radiation induced microscopic damage has been carried out by RD50 since the collaboration started. Since 2006 the WODEAN project has given a significant contribution about the study of the most relevant parameter changes in irradiated silicon detectors. Defects have been studied by different techniques in a coordinated way in an

extremely wide fluence range (10¹¹-10¹⁶ ncm⁻²).

Some conclusions (WODEAN Project on Neutron irradiation) are:

-small damage events (point defects) and disordered regions (clusters)

-Electron damage model of G. Davies can be applied to small damage events in neutron damage;

-Clusters: some information can be deduced from DLTS;

-Proposed assignment for E4/E5-and L-center: E4/E5: different charge states of V₃ and L

= V₃O (comparison with FTIR);

-Bistability of E4/E5 correlates with dark current;

-Deep acceptors H(116K)...H(152K) responsible for reverse annealing of N_{eff}

Program in next future:

Modelling and understanding role of clusters

Extend studies to p-type silicon detectors

Extend search on defects responsible for trapping