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Poster summary

This poster presents the recent results
obtained by RD50 collaboration from
tests of several detector technologies
and silicon materials at radiation levels
corresponding to SLHC fluences.

INTRODUCTION

While the CERN Large Hadron Collider (LHC) is
scheduled to start taking data this year, a machine
upgrade to achieve a much higher luminosity is
being developed:

Super-LHC (SLHC) > Ly, =10% cm?s1

Starting around 2018, we aim to record 3000 fb! of
good quality data after the start-up of the SLHC.

As radiation damage scales with integrated
luminosity, the particle physics experiments at the
SLHC will need to be equipped with a new
generation of radiation hard detectors. This is of
particular importance for the semiconductor
tracking detectors located close to the interaction
region, where the highest radiation dose occurs.

The ATLAS Experiment will require a new particle
tracking system for SLHC operation. In order to cope
with the increase in pile-up events by about an order
of magnitude at the higher luminosity, a silicon
detector with enhanced radiation hardness is being
designed. Also CMS will need a replacement of
silicon tracker.
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= CCE is crucial for very high fluences, but
other important parameters have to be
considered (SNR, efficiency, system
aspects, price of technology, cooling, track
resolution, reliability, ..)
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- Different bulk materials irradiated with
charged and neutral particles.
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er: This poster cannot present all recent results of the whole RD50 collaboration,
for more information please visit the website (see http://www.cern.ch/rd50)
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Recent RD5o0 Results

The Difficulty
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Comparison between LHC and SLHC:
« Higher radiation levels
- Higher radiation tolerance required!
« Higher multiplicity
- Higher granularity required!
Need for new detectors & detector technologies

| RD50 objectives

® Material characterization & defect engineering

- Understanding of radiation damage

- Macroscopic effects and microscopic defects

- Irradiation with different particles (n, p, 7)
- Oxygen enrichment

- DOFZ, Cz, MCz, EP], (SIC & GaN evaluated/abandoned)
- Understanding/tuning of influence of processing technology

« Device engineering

- p-type silicon (n-in-p)
- thin sensors
- 3D detectors

- Proposal/understanding which sensor material
and/or sensor configuration can be used at which
radius to the beam for the SLHC and beyond

Pixel sensors: fluence for LHC and SLHC
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Short collection path/time: almost no trapping; charge of the complete volume is collected

“3D" electrodes: - narrow columns along detector thickness
- diameter: 10pum, distance: 50-100 pm
Lateral depletion: - lower depletion voltage needed
- thicker detectors possible
- fast signal
¥ Smaller trapping probability

- radiation hard

* Higher capacitances

1. 3D single column type (SCT)
« Suffer from a low field region between
columns
2. 3D double-sided double type columns (DDTC)
 challenging
« Full field

low-field region
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« Radiation Damage in Silicon Detectors

» Change of Depletion Voltage (type inversion, reverse annealing, ..

(can be influenced by defect engineering!)
» Increase of Leakage Current (same for all silicon materials)

» Increase of Charge Trapping (same for all silicon materials)

sMicroscopic defects

» Good understanding of damage after y-irradiation
(point defects)

» Damage after hadron damage still to be
understood (cluster defects), however enormous
progress in last 2 years

Signal to Noise ratio is quantity to watch (material + geometry + electronics)

« CERN-RD50 collaboration working on:

> Material Engineering (Silicon: DOFZ, MCz, EPI, ...) (RD42: Diamond)

» Device Engineering (3D, thin sensors, n-in-p, n-in-n, ...)
(RD39: Cryogenic, CI)

- To obtain ultra radiation hard sensors a
combination of material and device engineering
approaches depending on radiation environment,
application and available readout electronics will
be the best solution

At fluences up to 10'“ncm? (outer layers of SLHC detector) the main
problems are the depletion voltage changing and the large area to be
covere

» MCzsilicon detectors could be a solution (more work needed!)

n-MCz: with mixed irradiation proton damaFe “compensates” part

of neutron damage (Neff). More charge collected at 500V after

additional irradiation !!
P-type silicon microstrip detectors show prommising results :

CCE = 6500 €’; @,,= 4x10'5cm’?, V=500V, 300pm, immunity
against reverse aﬂnea]ing!

This is presently the baseline option for the ATLAS upgrade.

«Diamond has become an interesting option for the innermost pixel layers

(no part of RD50 project)

« At fluences of 10*°ncm 2 (inner SLHC layers) the active
thickness of any silicon material is significantly reduced due
to trapping.

Collection of electrons at electrodes essential: Use n-in-p or
n-in-n detectors!

» Recent results show that planar silicon sensors might
still give sufficient signal Fs_ti]l some interest in epitaxial

silicon and thin sensor options)

3D detectors: looks Promising, drawback : technology
has to be optimized!

l\ﬁany collaborations and sensor producers working on
is.

 n-strip readout (n-in-n or n-in-p) looks promising
« Trapping is the main villain at high fluences

» Consider high voltage (800-1000V) operation to achieve adequate CCE
+ High and homogeneous oxygen content (e.g. MCz) is more radiation tolerant vs. charged particle radiation (see already RD48)

« p-material does not show significant annealing behaviour for CCE
« In all cases, RD50 gives only recommendation:

» Especially SNR with specific electronics, final geometry and process technology must be considered
» All simulation fit parameters need adaptations to the specific case




