Development of 3D Detectors for Very High Luminosity Colliders

Celeste Fleta

University of Glasgow

October 30, 2007

On behalf of the CERN-RD50 Collaboration

This talk shows a review of the work of RD50 on the use of 3D detectors as trackers in high radiation environments

1. The CERN-RD50 collaboration

2. Silicon 3D detectors

3. Simulation work

4. Different approaches

- Single sided 3D
- Double sided 3D
- Full 3D

The CERN-RD50 Collaboration

- Aims to develop solid state detectors capable of operating in extreme radiation environments
- Created in 2002. 261 members, 50 institutes, 25 countries

C. Fleta

3D detectors

- Proposed by <u>S. Parker et al. NIMA395 (1997).</u>
- 3-d array of p and n electrodes that penetrate into the detector bulk
- Lateral depletion
 - Maximum drift and depletion distance set by electrode spacing
 - Thicker detectors possible
 - Reduced charge sharing
 - Reduced collection time and depletion voltage
- Technologically complex

2007 IEEE NSS

Rad hard

Simulation study of 3D sensors

- University of Glasgow
- Modified Perugia 3-level trap model
 - Trap parameters modified to match experimental trapping times
- Model accuracy assessed by comparing with results from planar devices

P-type FZ trap model

Туре	Energy (eV)	Trap	σ _e (cm²)	σ _h (cm²)	η (cm⁻¹)
Acceptor	Ec-0.42	VV	9.5*10 ⁻¹⁵	9.5*10 ⁻¹⁴	1.613
Acceptor	Ec-0.46	VVV	5.0*10 ⁻¹⁵	5.0*10 ⁻¹⁴	0.9
Donor	Ev+0.36	CiOi	3.23*10 ⁻¹³	3.23*10-14	0.9

[D. Pennicard et al., 10th RD50 Workshop, June 2007]

Depletion voltages and radiation damage

Simulation study of 3D sensors

- University of Glasgow ٠
- Modified Perugia 3-level trap model •
 - Trap parameters modified to match experimental trapping times
- Model accuracy assessed by comparing ٠ with results from planar devices

Simulated CCE in p-type detectors

Туре	Energy (eV)	Trap	σ _e (cm²)	σ _h (cm²)	η (cm⁻¹)
Acceptor	Ec-0.42	VV	9.5*10 ⁻¹⁵	9.5*10 ⁻¹⁴	1.613
Acceptor	Ec-0.46	VVV	5.0*10 ⁻¹⁵	5.0*10 ⁻¹⁴	0.9
Donor	Ev+0.36	CiOi	3.23*10 ⁻¹³	3.23*10-14	0.9

P-type FZ trap model

- Simulation floods pixel with uniform charge to get "average" CCE
- Charge collected by the simulated 3D device in 10ns
- Good charge collection predicted, even for high (s-LHC) irradiation levels

C. Fleta

Single type column detectors (ITC-irst)

2-stage depletion

- 1. Lateral depletion
- 2. Planar-like depletion towards the back contact
- (Confirmed with C-V and CCE measurements, see Scaringella et al., NIMA 579 (2007))

Electrons swept away by transversal field and drift to nearest column (~40 µm)

Holes drift in central region and diffuse/drift to p+ contact (~300-500 µm)

- Fabricated by ITC-irst/CNM
 - Strip, pad detectors
 - 300 or 500 µm p-type substrate
 - Hole depth 130-150 μm, diameter ~10 μm
 - Columns not filled, just passivated
- Variation of the STC-3D developed at BNL
 - Ohmic contact is implemented on the same side of the column etching: true onesided detector (backside not processed)

C. Fleta

Position resolved CCE in STC-3D strip detectors

- Laser tests with ATLAS SCT readout
- University of Freiburg
- 40MHz ATLAS SCT EndCap electronics
 - Binary readout
 - Shaping time 20ns
- Laser spot 4-5µm, penetration 100µm
- STC-3D AC coupled strip detector

- Lateral depletion ~20V
- Non-homogenous response: low field region in interstrip area
- Results after irradiation and with β source in S. Kuehn's talk (N44-2)

October'07 beam test

- Organized by the ATLAS 3D R&D Group
- Carried out by Freiburg/Glasgow
- 180 GeV pions in CERN H8 beam line
- 2 Single-type column 3D strip detectors (pspray, mod p-spray)
- Beetle front-end chip and TELL1 DAQ LHCb interfacce board
- Trigger and timing information from Bonn ATLAS telescope

Preliminary!

CCE in STC-3D irradiated strip detectors

- Position sensitive TCT measurements in Ljubljana (see poster N24-150)
 - IR laser, FWHM ~7 μ m
 - STC-3D DC coupled detector, 64 x 10 columns
 - 80µm pitch, 80µm between holes

CCE after neutron irradiation 25ns transient current integration

[G.Kramberger et al., 10th RD50 Workshop, June 2007]

- As expected, STC-3D are **not** radiation hard:
 - E-field determined by doping (higher doping large E).
 - When the volume between columns is fully depleted, the electric field cannot be increased further
 - · Essential to counteract trapping
- Very non-homogenous response due to variations in the electric field (saddle in mid-region)

Double sided 3D detectors

- Proposed by IMB-CNM (Spain)
- Electrodes etched from opposite sides of the wafer
- Double side processing
- No sacrificial wafer is required
- ✓ IMB-CNM currently processing a first run of n-type wafers with Medipix2, Pilatus2 and strip detectors
- ✓ Double-sided technology also being investigated by ITC-irst
 → see talk N18-3

2007 IEEE NSS

C. Fleta

Double sided 3D detectors

- Short charge collection times because both carrier types mainly drift horizontally
- High drift velocity as the electric field can be increased even after full depletion.

No damage

Disadvantages: low field region below columns

 $10^{16} n^{eq}/cm^2$

- DS-3D has slightly higher collection at low damage (greater device thickness!)
- But at high fluence, results match standard 3D

Performance comparable to standard 3D

C. Fleta

Full 3D detectors

- Project Glasgow/Diamond Light Source Synchrotron to develop 3D detectors for X-ray diffraction experiments
 - Fabrication by IceMOS Technology Ltd. (Northern Ireland)
- Full 3D detectors on n-type Si
- Prototype 3D detectors will be integrated and tested with existing r/o electronics:
 - Medipix2, Pilatus2, Beetle readout chips
 - Readout in p-electrodes \rightarrow hole collection
 - All contacts on the top → need to route metal lines connecting all n-electrodes (biasing)
- Fabrication: start with a thick (~500 μm) wafer, create electrodes from the top (~250 μm), then grind/polish to expose electrodes.

C. Fleta

Conclusions

- Ongoing work of RD50 in 3D detectors
 - Promising candidates as vertex sensors for extreme radiation environments
 - Low depletion voltage, good charge collection even for s-LHC irradiation levels
- STC-3D detectors fabricated and tested succesfully
 - + Simple fabrication process, useful to tune in the technology and gain experience with testing methods
 - Long charge collection times, can be used in experiments that do not need a fast response
- Double sided and full 3D available soon
- More information: <u>http://rd50.web.cern.ch/RD50/</u>