http://cern.ch/rd50

Recent results from RD50

- SLHC
- RD50
 - Improving silicon detectors
 - New material
 - New structures
- Conclusions

D. Bortoletto, Purdue University **Representing RD50**

SLHC

- Summer 2001: two CERN tasks forces investigate Physics potential (CERN-TH-2002-078) and accelerator requirements (LHC Project report 626) of an LHC upgrade
- March 2002: LHC IR upgrade collaboration meeting : <u>http://cern.ch./lhc-proj-IR-upgrade</u>
- October 2002: ICFA seminar at CERN on "Future Perspectives in High Energy Physics"
- March 2003: LHC Performance workshop , Chamonix <u>http://ab-</u> div.web.cern.ch/Conferenced/Chamoix/2003/
- •2004: Coordinated Accelerator Research in Europe on High Energy High Intensity Hadron Beams (CARE-HHH) network created:
 - WP 1: Advancements in Accelerator Magnet Technologies (AMT)
 - WP 2: Novel Methods for Accelerator Beam Instrumentation (ABI)
 - WP 3: Accelerator Physics and synchrotron Design (APD)

http://care-hhh.web.cern.ch/

LHC upgrade scenarios

- LHC phase 0: maximum performance w/o hardware changes
- LHC phase 1: maximum performance with arcs unchanged
- LHC phase 2: maximum performance with 'major' changes Nominal LHC performance at 7 TeV corresponds to L=10³⁴ cm⁻²s⁻¹ in IP1 and IP5 (ATLAS and CMS), halo collisions in IP2 (ALICE) and low-luminosity in IP8 (LHC-b)

PHASE 2

- Modify injectors to significantly increase beam intensity and brilliance beyond ultimate value (possibly together with beambeam compensation schemes)
- Equip SPS with s.c. magnets, upgrade transfer lines, and inject at 1 TeV into LHC
- Install new dipoles with 15-T field and a safety margin of 2 T, which are considered a reasonable target for 2015 and could be operated by 2020 beam energy around 12.5 TeV

Effective luminosity for various upgrade options

parameter	symbol	nominal	ultimate	shorter bunch	longer bunch	
protons per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	6.0	
bunch spacing	Δt _{sep} [ns]	25	25	12.5	75	
average current	I [A]	0.58	0.86	1.72	1.0	
longitudinal profile		Gaussian	Gaussian	Gaussian	flat	
rms bunch length	σ _z [cm]	7.55	7.55	3.78	14.4	
B* at IP1&IP5	ß* [m]	0.55	0.50	0.25	0.25	
full crossing angle	θ _e [µrad]	285	315	445	430	
Piwinski parameter	θ _c σ _z /(2σ [*])	0.64	0.75	0.75	2.8	
peak luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	1.0	2.3	9.2	8.0	
events per crossing		19	44	88	510	
IBS growth time	τ _{x,IBS} [h]	106	72	42	75	
nuclear scatt. Iumi lifetime	τ _N /1.54[h]	26.5	17	8.5	5.2	
lumi lifetime (τ _{gas} =85 h)	τ _L [h]	15.5	11.2	6.5	4.5	
effective luminosity	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.4	0.8	2.4	1.9	
(T _{turnaround} =10 h)	T _{run} [h] optimum	14.6	12.3	8.9	7.0	
effective luminosity	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.5	1.0	3.3	2.7	
(T _{turn} =5 h)	T _{run} [h] optimum	10.8	9,1	6.7	5.4	
CERN						

Daniela Bonoletto Venex 2005 Nikko Japan

r. Ruggieru

Reference LHC Luminosity Upgrade: workpackages and tentative milestones

and the second	and a second	the second second second	the second second second	a second second second	and the second	the second second	and the second	- Contractor	and the second	The second s		and the second
accelerator	WorkPackage	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	afier 2015
LHC Main Ring	Accelerator Physics	Ç	8 8	<u>(</u>	<u> </u>		5			8		
	High Field Superconductors	1	1	20 	6		2	1				
	High Field Magnets											
	Magnetic Measurements				General			4		1		
	Cryostats											
	Cryogenics: IR magnets & RF		5	Ę.				<u> </u>		0		
	RF and feedback			\$i	\$		2	8		â		
	Collimation&Machine Protection											
	Beam Instrumentation		(<u> </u>		8			8		1		
	Power converters									[
SPS	SPS kickers					ir 🦾		8				
	Tentative Milestones	Beam-beam compensation test at RHIC	SPS crystal collimation test	LHC collimation tests	LHC collimation texts	Install phase 2 collimation	LHC tests: collimation & beam-beam			Install new SPA kickers	new IR magnets and RF system	
	Other Tentstive Milestones	Crab cavity test at NEKB	Low-noise crab cavity test at RHIC	LHC Upgrade Conceptual Design Report		LHC Upgrade Technical Design Report	Nominal LHC luminosity 10^34			Ultimate LHC huminosity 2.3x10°34	beam-beam tompensation	Double ultimate LHC huminosity 4.6x10°34
		LHC Upgrade Reference Design Report										

R&D - scenarios & models	
specifications & prototypes	
construction & testing	
installation & commissioning	

F Ruggiero

CERN

Reference LHC Upgrade scenario: peak luminosity 4.6x10^34/(cm^2 sec) Integrated luminosity 3 x nominal ~ 200/(fb*year) assuming 10 h turnaround time new superconducting IR magnets for beta*=0.25 m

phase 2 collimation and new SPS kickers needed to attain ultimate LHC beam intensity of 0.86 A

beam-beam compensation may be necessary to attain or exceed ultimate performance

new superconducting RF system: for bunch shortening or Crab cavities

LHC upgrade scenarios

hardware for nominal LHC performance (cryogenics, dilution kickers, etc) not considered as LHC upgrade R&D for further luminosity upgrade (intensity beyond ultimate) is recommended: see Injectors Upgrade

SLHC and tracking

Proton Energy: 7 TeV Collision rate: 40 MHz Peak luminosity:10³⁴ cm⁻²×s⁻¹ 10³⁵ cm⁻²×s⁻¹ Int. luminosity: **500 fb**⁻¹

LHC (2007) SLHC (2015) 12.5 TeV **80 MHz** 2500 fb⁻¹

~ 100 pile-up events per bunch crossing for 12.5 ns bunch spacing compared to ~ 20 at 10^{34} cm⁻² s⁻¹ and 25 ns

• If same granularity and integration time as now, the tracker occupancy and radiation dose increases by a factor of $10 \Rightarrow$ implication for radiation damage and physics

Daniela Bortoletto Vertex 2005 Nikko Japan

SLHC and tracking

 dn^{cha}/dη/crossing ≈600 and ≈3000 tracks in tracker ⇒more granularity if we aim at same performance we expect from the LHC trackers

 $H \rightarrow ZZ \rightarrow ee\mu\mu$ m(higgs)=300 GeV all tracks with $p_T < 1$ GeV removed

- Integrated Luminosity (radiation damage) dictates the detector technology
- Instantaneous rate (particle flux) dictates the detector granularity

R (cm)	Φ (p/cm ²⁾	Technology
>50	10 ¹⁴	Present p-in-n (or n- in-p)
20-50	10 ¹⁵	Present n-in-n (or n- in-p)
<20	10 ¹⁶	RD needed

Daniela Bortoletto Vertex 2005 Nikko Japan

SLHC and tracking

CMS and Atlas are starting look at detector configurations:

RD50

•Objective:

 Development of ultra-radiation hard semiconductor detectors for the luminosity upgrade of LHC to 10³⁵ cm⁻²s⁻¹

•Challenges:

- Radiation hardness of semiconductor detectors up to hadron fluences of 10¹⁶ cm⁻²
 - Fast signal collection (25ns \rightarrow 12.5 ns bunch crossing)
 - **Low mass** (reduce multiple scattering near interaction point)
 - Cost (big surfaces)

RD50 was formed in November 2001 and approved in June 2002. Presently there are 254 Members from 19 countries

Belgium (Louvain), Belarussia (Minsk), Canada (Montreal), Czech Republic (Prague (2x)), Finland (Helsinki, Lappeenranta), Germany (Berlin, Dortmund, Erfurt, Friburg, Hamburg, Karlsruhe), Israel (Tel Aviv), Italy (Bari, Bologna, Florence, Milano, Padova, Perugia, Pisa, Trento, Trieste, Turin), Lithuania (Vilnius), Poland (Warsaw (2x)), Norway (Oslo (2x)), Romania (Bucharest (2x)), Russia (Moscow, St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona, Valencia), Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Exeter, Glasgow, Lancaster, Liverpool, Sheffield, Guilford), USA (Albuquerque, BNL, Fermilab, Purdue, Rochester, Rutgers, Santa Cruz, Syracuse)

Radiation Damage in Si

Radiation hard devices

Silicon Defect Engineering

- Understanding radiation damage
 - Macroscopic effects and Microscopic defects
 - Simulation of defect properties & kinetics
 - Irradiation with different particles & energies
- Oxygen rich Silicon

 DOFZ, Cz, MCZ, EPI
- Oxy. dimer & hydrogen enriched Si
- Pre-irradiated Si
- Influence of processing technology
- New Materials
 - Silicon Carbide (SiC), Gallium Nitride (Gaix)
 - Diamond: CERN RD42 Collaboration (HK's talk)
 - Amorphous silicon

Device Engineering

- p-type silicon detectors
- (n-in-p)
- thin detectors
- 3D and Semi 3D detectors
- Stripixels
- Cost effective detectors
- Simulation of highly irradiated detectors
- Monolithic devices
- Change operational conditions
 - CERN-RD39
 "Cryogenic Tracking Detectors"

Oxygen in Silicon

- Rd48 results showed that DOFz is more rad hard
- This stimulated interest in Cz silicon (also cheaper than FZ)

SILICON MATERIAL	Symbol	ρ (Ωcm)	[O _i]cm ⁻³
Standard n or p-type FZ	FZ	1-7 ×10 ³	<5×10 ¹⁶
Diffusion Oxygenated FZ n or p-type	DOFZ	1-7 ×10 ³	1-2×10 ¹⁷
Magnetic Czochralski Okmetic, Finland	MCz	~1 ×10 ³	8-9×10 ¹⁷
Epitaxial on Cz, ITME	EPI	50-100	1×10 ¹⁷

FZ, DOFZ, Cz and MCz Silicon

• Standard FZ silicon

- type inversion at ~ 2×10¹³ p/cm²
- N_{eff} increase at high fluence

Oxygenated FZ (DOFZ)

- type inversion at ~ 2×10¹³ p/cm²
- reduced N_{eff} increase at high fluence

- 800 12 • CZ < 100>, TD killed ◆ MCZ <100>, Helsinki 10 600 STFZ <111> $N_{eff} [10^{12} \text{ cm}^{-3}]$ ▲ DOFZ <111>, 72 h 1150°C 8 \sum _____400 200 24 GeV/c proton 2 irradiation 10 2 4 6 8 proton fluence $[10^{14} \text{ cm}^{-2}]$
- no type inversion in the fluence range (verified for CZ silicon by TCT) ⇒ donor generation overcompensates acceptor generation in high fluence range
- Common to all materials (after hadron irradiation):
 - reverse current increase
 - increase of trapping (electrons and holes) within ~ 20%

DOFZ n-in-p

 N-side read-out is advantageous and is used for ATLAS and CMS pixels, LHCb-VELO microstrips.

P-type DOFZ silicon for n-side

Benefit: Single sided processing

(almost 50% cheaper than n-in-n,

read-out detectors (n-in-p).

INFN SMART

- RD50 common wafer procurement with Okmetic
- Wafer Layout designed by the SMART Collaboration
- Masks and process by ITC-IRST: LTO, no LTO, different sintering temperatures (avoid thermal donors formation @400-600 °C)
- 10 different strip geometries
- Low dose p-spray (3E12 cm⁻²)
- High dose p-spray (5.0E12 cm⁻²)

Run I p-on-n

22 Wafers Fz, MCz, Epi

Run II n-on-p

24 Wafers Fz and MCz

Test2: GCD, Van der Paw Test1: Diode+Mos Square MGdiodes Microstrip detectors Inter-strip Capacitance test Round MG-diodes http://www.infn.it/esperimenti/esperimentien.php?gruppo =5&sigla_naz=SMART

SMART

Irradiation studies

Irradiation with 24 Gev/c protons at CERN SPS 3 fluences: 6.0x10¹³, 3.0x10¹⁴, 3.4x10¹⁵ 1-MeV n/cm²
 Irradiation with 26 MeV protons at the Cyclotron of the Forschungszentrum Karlsruhe 11 fluences: 1.4x10¹³ - 2.0x10¹⁵ 1-MeV

SMART

Other studies

SMART

Purdue-USCMS MCz

PURDUE UNIVERSITY.

- RD50 common wafer procurement (produced by Okmetic - Vantaa, Fi)
 5 MCz wafers were processed by SINTEE (along with 15 standard)
- SINTEF (along with 15 standard wafers for preproduction of the FPiX CMS project).
- n-type substrate with <100> direction
- Thickness: ~ 300 μm
- Two diodes and 9 sensors per wafer
- Resistivity:
 - 3~4KΩcm (standard)
 - 1~1.5KΩcm (MCZ)
- n –pixels on n-type MCz with pstop isolation

Pre-irradiation Studies

EPI Irradiation

- No type inversion in the full range up to ~ 10¹⁶ p/cm² and ~ 10¹⁶ n/cm² (type inversion only observed during long term annealing)
- Proposed explanation: introduction of shallow donors bigger than generation of deep acceptors

Signal in irradiated EPI

- Epitaxial silicon: CCE measured with beta particles (⁹⁰Sr)
 - 25ns shaping time
 - proton and neutron irradiations of 50 μ m and 75 μ m epi layers

EPI SLHC Scenarios

COST

Material	Cost euros/wafer
Siltronix (France)	70
p-type (low quantities)	
(large quantities should similar to MCZ)	
Okmetic MCz 4" DSP (only large orders >200 wafers)	44
Okmetic MCz 6" DSP (only large orders >2000 wafers)	50
EPI 4" ITME 150µm	100
Small order of 9 wafers	
EPI 4" ITME 75µm	70

Novel Materials

Property	Diamond	GaN	4H SiC	Si	Wide bandgan
E _g [eV]	5.5	3.39	3.26	1.12	(3.3eV)
E _{breakdown} [V/cm]	10 ⁷	$4 \cdot 10^{6}$	2.2.10	3.10^{5}	\rightarrow < leakage current
$\mu_{\rm e} [{\rm cm}^2/{\rm Vs}]$	1800	1000	800	1450	than silicon
$\mu_{\rm h} [{\rm cm}^2/{\rm Vs}]$	1200	30	115	450	• Signal:
v _{sat} [cm/s]	$2.2 \cdot 10^{7}$	_	2.10^{7}	0.8.10.7	Diamond 36 e/um
Ζ	6	31/7	14/6	.14	SiC 51 e/μm
E _r	5.7	9.6	9.7		Si 89 e/μm
e-h energy [eV]	13	8.9	(.6-8.4)	3.6	> charge than
Density [g/cm ³]	3.515	6.15	3.22	2.33	diamond
Displacem. [eV]	. 43	19.2±2	25	<u>13-20</u>	Isplacement threshold than

R&D on diamond detectors: **RD42** – Collaboration http://cern.ch/rd42/

> Recent review: P.J.Sellin and J.Vaitkus on behalf of RD50 "New materials for radiation hard semiconductor detectors", submitted to NIMA

silicon

⇒radiation harder

than silicon (?)

SiC: CCE after irradiation

- Material: epitaxial layers by CREE Res. Inc. and IKZ (Institut fur Kristallzüchtung, Berlin)
- Devices: Schottky diodes, Alenia Marconi Systems (Rome)
- Depletion depth: 20-40 μm
- Effective doping: 5.3× 10¹⁴ cm⁻²
- Irradiated with protons at CERN PS to 1.6 ×10¹⁶/cm² and neutrons al Ljubjana to 7 ×10¹⁵/cm²
- CCE before irradiation: 1100 e⁻ @400 V with α particles, 1400 e⁻ at 200 V with MIPS (100% CCE)

S.Sciortino et al., presented on the RESMDD 04 conference, in press with NIMA

Device Engineering: 3D detectors

(Introduced by S.I. Parker et al., NIMA 395 (1997) 328)

 Combine VLSI and MEMS (Micro Electro Mechanical Systems).

Electrodes:

- Narrow columns processed inside the bulk instead then implanted on surface: 3D
- diameter: 10μm, distance: 50-100μm
- Lateral depletion:
 - lower depletion voltage
 - thicker detectors possible
 - short collection distance \Rightarrow fast signal
 - More rad hard
- Processing: Wafer bonding, Deep reactive ion etching, Low pressure chemical vapor deposition, Metal deposition

Production of 3D sensor matched to ATLAS Pixel readout chip under way (S.Parker, Pixel 2005)

- Drawback: Long, Complex and Notstandard fabrication process
- Mass production expensive

3D DETECTOR FABRICATION

1) ETCHING THE ELECTRODES

IR picture of 2 bonded wafer

WAFER BONDING (mechanical stability) Si-OH + HO-Si -> $Si-O-Si + H_2O$

LOW PRESSURE CHEMICAL VAPOR DEPOSITION (Electrodes filling with conformal doped polysilicon) $2P_2O_5 + 5 Si - 4P + 5 SiO_2$ $2B_2O_3 + 3Si \rightarrow 4B + 3SiO_2$

DEEP REACTIVE ION ETCHING (electrodes definition) **Bosh process** SiF_4 (gas) + C_4F_8 (teflon)

METAL DEPOSITION Shorting electrodes of the same type with Al for strip electronics readout or deposit metal for bump-bonding

C shaped test structure \sim 1 µm difference between top and bottom

Daniela Bortoletto Vertex 2005 Nikko Japan

Device Engineering: 3D detectors

IRST-Trento and CNM Barcelona

- 3D Single Type Column (3D-STC) aiming at process simplification
- -n+ columns in p-type substrate
- -Bulk contact provided by a uniform p+ contact on backside
- -Holes not etched through the wafer
- -No hole filling (holes are doped but not filled with polysilicon)
- -CNM: Hole etching (DRIE); IRST: other processing (contacts or polysilicon deposition, etc

10 µm

3D-SCT Detectors

3D-SCT Detectors

- Strip detect layout:
 - •No columns:12,000-15,000
 - Inter-column pitch 80-100μm
 - Holes d=6-10μm
 - P-stop and p-spray isolation

Pozza and Boscardin RD05 Florence

Common p-stop

for each strip

Two p-stop layouts

Single p-stop

for each hole

AC and DC coupling

Average current per column <1 pA

DC pads

- Early breakdown for p-spray pre-irradiation
- AC coupling:
 DC coupling:

First results are very promising DRIE does not

affect device performance

Daniela Bortoletto Vertex 2005 Nikko Japan

Other new structures: Stripixel

Several concepts for new (planar and mixed planar & 3D) detector structures aiming for improved radiation tolerance or less costly detectors (see e.g. Li - 6th RD50 workshop, or Bortoletto-5th RD50 Workshop)

Summary

- At fluences up to 10¹⁵cm⁻² (Outer layers of a SLHC detector) the change of depletion voltage and the large area is the major problem:
 - CZ silicon detectors could be a cost-effective radiation hard solution (no type inversion, use p-in-n technology)
 - p-type silicon microstrip detectors show very encouraging results: CCE \approx 6500 e; Φ_{eq} = 4×10¹⁵ cm⁻², 300µm, collection of electrons no reverse annealing observed in CCE measurement!
- At the fluence of 10¹⁶cm⁻² (Innermost layer of a SLHC detector) the active thickness of any silicon material is significantly reduced due to trapping. The promising new options are:
- Thin/EPI detectors: drawback: radiation hard electronics for low signals needed e.g. 2300e at Φ_{eq} 8x10¹⁵cm⁻², 50µm EPI, thicker layers will be tested in 2005/2006

• 3D detectors: drawback: technology has to be optimized steady progress within RD50

New Materials like SiC and GaN (not shown) have been characterized .
 CCE tests show these materials to be still not radiation harder than silicon