

Semiconductor materials and detectors for future very high luminosity colliders

Andrea Candelori Istituto Nazionale di Fisica Nucleare (INFN), Italy

On behalf of the CERN RD50 Collaboration (http://rd50.web.cern.ch/rd50/)

- Motivations: the LHC upgrade
- The CERN RD50 Collaboration
- Improving the silicon detector radiation hardness:
 - -Oxygen in the silicon substrate
 - -Thin detectors: TMAH-thinned and epitaxial
 - -Pre-irradiated silicon
- New detector structures: 3D-STC and Semi-3D
- Summary

The upgrade of the Large Hadron Collider (LHC) at CERN

(M. Hutinen: "Radiation issues for Super-LHC", Super-LHC Electronics Workshop, 26/2/04, CERN O. Bruning: "Accelerator upgrades for Super-LHC", Super-LHC Electronics Workshop, 26/2/04, CERN)

Proton Energy:7 TeVCollision rate:40 MHzPeak luminosity: 10^{34} cm Integrated luminosity: 500 fb^{-1}

RD50

The CERN RD50 Collaboration

- 1. Formed in November 2001
- 2. Approved in June 2002

Main objective:

Development of ultra-radiation hard <u>semiconductor detectors</u> for the luminosity upgrade of LHC to 10³⁵ cm⁻²s⁻¹ (Super-LHC).

Challenges:

- Radiation hardness of semiconductor detectors up to fast hadron fluences of 10¹⁶ cm⁻²;
- Fast signal collection (10 ns bunch crossing);
- Low mass (reducing multiple scattering close to interaction point);
- Cost effectiveness.

Presently 254 Members from 54 Institutes

Belgium (Louvain), Belarussia (Minsk), Canada (Montreal), Czech Republic (Prague (2x)), Finland (Helsinki, Lappeenranta), Germany (Berlin, Dortmund, Erfurt, Friburg, Hamburg, Karlsruhe), Israel (Tel Aviv), Italy (Bari, Bologna, Florence, Milano, Padova, Perugia, Pisa, Trento, Trieste, Turin), Lithuania (Vilnius), Poland (Warsaw (2x)), Norway (Oslo (2x)), Romania (Bucharest (2x)), Russia (Moscow, St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona, Valencia), Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Exeter, Glasgow, Lancaster, Liverpool, Sheffield, Guilford), USA (Albuquerque, BNL, Fermilab, Purdue, Rochester, Rutgers, Santa Cruz, Syracuse)

Radiation effects in silicon detectors

I) Increase of the leakage current:

Increase of shot noise: $F(\omega)=qI/\pi$ Decrease of S/N ratio Increase of power dissipation: $P=V\times I$ Increase of voltage drop on bias resistors: $\Delta V=R\times I$ Leakage current decreases by a factor ≈ 2 every 7.5 K

II) Variation of the depletion voltage (V_{dep}):
V_{dep}>V_{breakdown}: the detector can not operate fully depleted
Decrease of charge collection efficiency
Decrease of S/N ratio

III) Increase of the charge trapping:

Decrease of trapping time constant and mean free path Decrease of charge collection efficiency Decrease of S/N ratio

Oxygen in the silicon substrate

Silicon type	Acronym	Characteristics	$[O] (cm^{-3})$
Float Zone	FZ	Standard	≈4·10 ¹⁶
Diffusion Oxygenated Float Zone	DOFZ	FZ + O diffusion for 24-48 h at 1100-1200 °C from SiO ₂ layers	$\approx 1 \cdot 10^{17}$
Magnetic Czochralski	MCZ	CZ + Magnetic field during crystal growth to improve homogeneity	≈ 5 ·10 ¹⁷
Czochralski	CZ	Standard	$\approx 8 \cdot 10^{17}$

- Why **Oxygen** (**O**) is important in n-type silicon? 1. V are radiation induced vacancies:

 - a) O absent: $V + V = V_2$ (deep acceptor) => V_{dep} variation b) O present: V + O = VO (neutral at RT) => Mitigation of V_{dep} variation c) O finished: $V + V = V_2$ (deep acceptor) $V + VO = V_2O$ (deep acceptor) => V_{dep} variation
 - 2. Irradiation with
 - a) γ -rays: point defects $\rightarrow [O] \gg [V]$ in DOFZ, MCZ, CZ \rightarrow Mitigation of V_{dep} variation b) Neutrons: clusters $\rightarrow [O] << [V]$ in DOFZ, MCZ, CZ \rightarrow No mitigation of V_{dep} variation

 - c) **Protons**: point defects and clusters \rightarrow intermediate condition between γ -rays and neutrons
 - 3. High [O] => Donor activation during irradiation

Example: FZ, DOFZ and MCZ Silicon

Observation of radiation induced donors in MCZ

D. Menichelli et al., "Shallow donors in MCz-Si n- and p-type detectors at different process temperature, irradiation and thermal treatments," presented at the 6th RD50 Workshop (Helsinki, Finland), 2-4 June 2005. On line available: http://rd50.web.cern.ch/rd50/.

Oxygen improves the V_{dep} long-term performace

M. Lozano et al., "Comparison of radiation hardness of p-in-n, n-in-n and n-in-p silicon pad detectors on FZ, DOFZ and MCZ Si," presented at the 5th RD50 Workshop (Geneve, Switzeland), 14-16 October 2004. On line available: http://rd50.web.cern.ch/rd50/.

Thin detectors

Why thin detectors?

W is the thickness of the detector active layer.

- 1. Smaller leakage current: $I_{leak} \propto W$
- 2. Smaller depletion voltage: $V_{dep} \propto W^2$
- 3. At Super-LHC fluences, charge collection is limited by charge trapping,

i.e. by reduced carrier mean free path, not by W \approx 280-300 µm detector thickness

T. Lari, "Detailed simulation of pixel sensors", presented at the Vertex Conference (Menaggio, Italy), 13-18 September 2004.

RD5

Thin detectors

TMAH-Thinned devices

(E. Ronchin et al., NIM A530 (2004) 134 and L. Andricek et al., TNS 51 (2004) 1117)

1. Tetra Methyl Ammonium Hydroxide (TMAH) etching from back.

- 2. Phosphorous deposition and diffusion from back.
- 3. Metal deposition from back.

Thin epitaxial layer on CZ substrate

(Hamburg Group, NIM A515 (2003) 665)

RD50

Thin epitaxial layer on CZ substrate

Pre-irradiated silicon

Substrate: FZ, n-type, 300 μ m thick, ρ = 3-4 k Ω ·cm

 Pre-irradiation: Idea. Formation of sinks for primary radiation defects. These sinks are complexes of radiation induced defects with neutral impurities, such as C and O, always present in silicon

 How to produce these sinks?
 Irradiation by fast nuclear reactor neutrons up to ≈10¹⁶ n/cm²

 Annealing with RT≤T≤ 850 °C (2 hours)

New detector structures: 3D-Single Type Column

-3D detector were proposed by S.I. Parker, C.J. Kenney and J. Segal (NIM A 395 (1997) 328). -Called 3D because, in contrast to silicon planar technology, have three dimensional (3D) p and n electrodes penetrating the silicon substrate.

Picture taken from C.J. Kenney et al., IEEE TNS 48 (2001) 189.

RD50

Advantages:

-depletion thickness depends on p⁺ and n⁺ electrode distance, not on the substrate thickness; -lower collection length and time than planar technology.

New detector structures: Semi-3D

Proposed by Z. Li (NIM A478 (2002) 303). Single-side microstip detectors with alternative n- and p- strips on the front side.

Advantages:

1. Single-side detector process.

2. After $N_{eff} < 0$, the depletion occurs from both sides reducing the depletion voltage by factor 2.5.

Under investigation:

Complex electric field distribution before and after SCSI.

RD50

(Z. Li and D. Bortoletto, 4th RD50 Workshop, http://rd50.web.cern.ch/rd50/4th-workshop)

Summary

General considerations:

1. Charge collection at Super-LHC fluences ($\geq 4-6 \times 10^{15}$ cm⁻²) is limited by carrier mean free path and for planar technologies is less dependent on detector thickness W.

2. Benefits from W decrease: 1) $I_{leak} \propto W$; B) $V_{dep} \propto W^2$.

3. High [O] required for limiting V_{dep} increase after irradiation thanks to donor generation and mitigation of deep acceptor creation.

Different technologies are under investigation in the CERN RD50 Collaboration:

1. CZ and MCZ silicon take advantage from higher [O] than FZ and DOFZ.

2. **TMAH-Thinned devices** (50-100 μ m) take advantage from V_{dep} \propto W², but small area sensors are available.

3. Thin (25, 50, 75 μ m) epitaxial layer on CZ substrate takes advantage from V_{dep} \propto W² and high [O]. Large area sensors. Possible to increase the thickness to 100-150 μ m to increase the charge collection.

4. **Pre-irradiated silicon**: V_{dep} increase mitigated after neutron irradiation (never observed for oxygenated silicon).

5. **P-type substrate devices** (see the paper).

Different detector layouts are under investigation beyond pixel and microstrip:

1. **3D-STC** (3D detector with Single Type Column), **Semi-3D** (V_{dep} lower by a factor 2.5, but complex electric field after SCSI), **3D** and **Stripixel** (see the paper).

More material on the RD50 WEB site: http://rd50.web.cern.ch/rd50/

P-type substrate detectors

(G. Casse et al., NIM A518 (2004) 340 and NIM A535 (2004) 362)

CCE(V) is improved if the read-out is at the high electric field contact: n⁺-p detectors (no SCSI) better than p⁺-n sensors after SCSI.
 DOFZ p-type substrates are expected to be more radiation hard than FZ p-type Si.

Miniature n⁺-p microstrip detectors on DOFZ substrate

Area: $1 \times 1 \text{ cm}^2$ Thickness: 280 µm Number of strips: 100 Read-out: SCT128 chip at 40 MHz Source for CCE: ¹⁰⁶Ru Simulations ("3 level model", M .Petasecca et al., NIM A546 (2005) 291) in agreement with measurements.

RD50

Charge, collected at 900 V bias after 7.5×10^{15} 24-GeV p/cm² (5.3×10^{15} 1-MeV equivalent neutrons/cm²) for **DOFZ p-type detector**, is **6500 electrons** (corresponding to the charge deposited in a 90 µm thick un-irradiated silicon sensor).

Stripixel detectors

Proposed by Z. Li (NIM A 518 (2004) 738).

Pixel electrodes arranged in a projective X-Y readout.

Characteristics:

- 1. Projective readout of double-sided strip detectors minimizing the read-out channels;
- 2. Two-dimensional position resolution of **pixel** electrode geometry;
- 3. Single-side detector process with double metal technology;
- 4. Key parameter: standard deviation of the collected charge distribution: χ ($\approx 10 \ \mu m$).

-Individual pixels alternatively connected to X- and Y- read-out.	-Each pixel is divided in two parts (X- and Y-cell).
-Charge must be collected at least by two pixels.	-Charge must be collected at least by one X- and by one Y-cell.
-Key condition: χ≥pitch	-Key condition: $\chi \ge$ interleaved distance between X- and Y- cells
-Resolution can be better than pitch.	-If pitch> χ the resolution is fixed by the pitch.

Alternative to macro-pixel detectors in the Super-LHC upgrade between 15 cm and 60 cm.

RD50

Approach for silicon tracker upgrade

Radial distances		Expected S-LHC	Expected S-LHC	
of the actual CMS tracker		fluence for fast hadrons		dose
Pixel:	4 cm	=>	1.6×10 ¹⁶ cm ⁻²	420 Mrad
	11 cm	=>	2.3×10 ¹⁵ cm ⁻²	94 Mrad
Microstrip: 22 cm 115 cm	=>	8×10 ¹⁴ cm ⁻²	35 Mrad	
	115 cm	=>	1×10 ¹⁴ cm ⁻²	9 Mrad

The current detector technologies can operate up to $\approx 10^{15} \text{ cm}^{-2}!$

Region	Approach for the tracker upgrade
R< 20 cm	=> R&D required
20 cm <r<60 cm<="" th=""><th>=> Improving pixel technology</th></r<60>	=> Improving pixel technology
R> 60 cm	=> Improving microstrip technology

