Workshop on ATLAS Upgrades for High Luminosity, CERN, 13 February 2005

# **RD50: Radiation hard sensors for Super - LHC**

#### Michael Moll CERN on behalf of RD50

### **OUTLINE**

- **RD50** collaboration (Organization & links to ATLAS experiment)
- Material engineering Radiation tolerant sensor materials
  - Silicon FZ, DOFZ, CZ, MCZ, Epitaxial (new materials for SLHC)
  - Other semiconductors (SiC, GaN) (not an option for SLHC?!)
- Device engineering Radiation tolerant detector concepts
- Conclusion

### http://www.cern.ch/rd50

### **The CERN RD50 Collaboration**

http://www.cern.ch/rd50



**RD50:** Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

- Collaboration formed in November 2001
- Experiment approved as RD50 by CERN in June 2002
- Main objective:

Development of ultra-radiation hard semiconductor detectors for the luminosity upgrade of the LHC to 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup> ("Super-LHC").

Challenges: - Radiation hardness up to 10<sup>16</sup> cm<sup>-2</sup> required

- Fast signal collection (Going from 25ns to 10 ns bunch crossing ?)
- Low mass (reducing multiple scattering close to interaction point)
- Cost effectiveness (big surfaces have to be covered with detectors!)
- Presently 252 Members from 50 Institutes

Belarus (Minsk), Belgium (Louvain), Canada (Montreal), Czech Republic (Prague (2x)), Finland (Helsinki, Lappeenranta), Germany (Berlin, Dortmund, Erfurt, Hamburg, Karlsruhe), Israel (Tel Aviv), Italy (Bari, Bologna, Florence, Padova, Perugia, Pisa, Trento, Trieste, Turin), Lithuania (Vilnius), Norway (Oslo (2x)), Poland (Warsaw), Romania (Bucharest (2x)), Russia (Moscow), St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona, Valencia), Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Exeter, Glasgow, Lancaster, Liverpool, Sheffield, University of Surrey), USA (Fermilab, Purdue University, Rochester University, Rutgers University, SCIPP Santa Cruz, Syracuse University, BNL, University of New Mexico)

### **Approaches of RD50 to develop** radiation harder tracking detectors





### Scientific Organization of RD50

**RD50** 

Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders





CERN contact: Michael Moll

# **RD50** <u>Silicon</u> Materials under Investigation by RD50



| Material                                | Symbol | <b>r</b> ( <b>W</b> cm)           | [O <sub>i</sub> ] (cm <sup>-3</sup> ) |
|-----------------------------------------|--------|-----------------------------------|---------------------------------------|
| Standard n- or p-type FZ                | FZ     | 1-7 <sup>-</sup> 10 <sup>-3</sup> | < 5´10 <sup>16</sup>                  |
| Diffusion oxygenated FZ, n- or p-type   | DOFZ   | 1-7 <sup>-</sup> 10 <sup>3</sup>  | ~ 1–2 <sup>-1017</sup>                |
| Czochralski Sumitomo, Japan             | Cz     | ~ 1 <sup>^</sup> 10 <sup>3</sup>  | ~ 8-9 <sup>-1017</sup>                |
| Magnetic Czochralski Okmetic, Finnland  | MCz    | ~ 1 <sup>^</sup> 10 <sup>3</sup>  | ~ <b>4-9</b> ´10 <sup>17</sup>        |
| Epitaxial layers on Cz-substrates, ITME | EPI    | 50 - 100                          | $< 1^{10^{17}}$                       |

#### • CZ silicon:

- very high O<sub>i</sub> (oxygen) and O<sub>2i</sub> (oxygen dimer) concentration (homogeneous)
- formation of shallow Thermal Donors possible

#### • Epi silicon

- high  $O_i$ ,  $O_{2i}$  content on substrate side due to out-diffusion from CZ substrate, low  $O_i$ ,  $O_{2i}$  content on surface side (<u>inhomogeneous</u> distribution)
- thin layers: high doping possible (low starting resistivity)

### Standard FZ, DOFZ, Cz and MCz Silicon



### 24 GeV/c proton irradiation

• Standard FZ silicon

**RD50** 

- type inversion at  $\sim 2^{-10^{13}} \text{ p/cm}^2$
- strong  $N_{eff}$  increase at high fluence
- Oxygenated FZ (DOFZ)
  - type inversion at  $\sim 2^{-10^{13}}$  p/cm2
  - reduced Neff increase at high fluence
- CZ silicon and MCZ silicon
  - <u>no type inversion</u> for charged hadron irradiation in the overall fluence range (verified for CZ silicon by TCT measurements, preliminary result for MCZ silicon)

**Þ** donor generation overcompensates acceptor generation in high fluence range

#### • Common to all materials:

- same reverse current increase
- same increase of trapping (electrons and holes) within ~ 20%



### **RD50** EPI Devices – Irradiation experiments



- E. Fretwurst, Univ. Hamburg, RESMDD04, October 2004
- Layer thickness: 25, 50, 75 mm; resistivity: ~ 50 Wcm
- Oxygen: [O] » 9<sup>-10<sup>16</sup></sup>cm<sup>-3</sup> (Oxygen dimers detected via IO<sub>2</sub>-defect formation)



- Development of  $N_{eff}$  nearly identical for 25 mm and 50 mm
- No type inversion in the full range up to ~  $10^{16}$  p/cm<sup>2</sup> and ~  $10^{16}$  n/cm<sup>2</sup>
- Proposed explanation: introduction of shallow donors bigger than generation of deep acceptors



### **RD50** Characterization of microscopic defects - gand proton irradiated silicon detectors -



#### • 2003: Major breakthrough on **g**irradiated samples

- <u>For the first time</u> macroscopic changes of the <u>depletion voltage and leakage current</u> can be explained by electrical properties of measured defects ! [APL, 82, 2169, March 2003]
- 2004: Big step in understanding the improved radiation tolerance of oxygen enriched and epitaxial silicon after proton irradiation



[I.Pintilie, RESMDD, Oct.2004]



# **RD50** Signal from irradiated EPI



- Epitaxial silicon: CCE measured with beta particles (<sup>90</sup>Sr)
  - 25ns shaping time
  - proton and neutron irradiations of 50 mm and 75 mm epi layers



### **Epitaxial silicon - Annealing**



• 50 mm thick silicon detectors:

**RD50** 

- Epitaxial silicon (50Wcm on CZ substrate, ITME & CiS)
- Thin FZ silicon (4KWcm, MPI Munich, wafer bonding technique)



[E.Fretwurst et al.,RESMDD - October 2004]

- Thin FZ silicon: Type inverted, increase of depletion voltage with time
- Epitaxial silicon: No type inversion, decrease of depletion voltage with time

**Þ** No need for low temperature during maintenance of SLHC detectors!





n-in-p: - no type inversion, high electric field stays on structured side,

- collection of electrons
- Miniature n-in-p microstrip detectors (280mm)
- Detectors read-out with LHC speed (40MHz) chip (SCT128A)
- Material: standard p-type and oxygenated (DOFZ) p-type



# **RD50 RD50** strip/pixel developments



#### • SMART – mask (Italian RD50 groups)

- 10 mini-strip (0.6x4.7cm2, 50 and 100 mm pitch, AC coupled)
- 37 pad diodes and various test structures
- Wafers processed by IRST, Trento on: n-type: MCZ, CZ, FZ, EPI (p-in-n) p-type: MCZ, FZ (n-in-p)



### • RD50 common mask for segmented devices

(coordinated by G.Casse, Liverpool)

- 26 mini-strip (1x1cm<sup>2</sup>, 100 strips, 80mm pitch, AC coupled)
- 12 pixel detectors, 20 pad diodes and various test structures
- Mask produced, wafer processing with CNM Barcelona and Micron, U.K. planned for 2005 (n/p-type MCZ; n/p-type DOFZ; n/p-type epi (150 mm)

# **RD50** Device Engineering: 3D detectors

1954-2004 CERN

#### • Electrodes:

- narrow columns along detector thickness-"3D"
- diameter: 10mm distance: 50 100mm
- Lateral depletion:
  - lower depletion voltage needed
  - thicker detectors possible
  - fast signal
- Hole processing :
  - Dry etching, Laser drilling, Photo Electro Chemical
  - Present aspect ratio (RD50) 30:1

#### **3D** detector developments within RD50:

1) Glasgow University – pn junction & Schottky contacts Irradiation tests up to  $5x10^{14}$  p/cm<sup>2</sup> and  $5x10^{14}$   $\pi$ /cm<sup>2</sup>:  $V_{fd} = 19V$  (inverted); CCE drop by 25% ( $\alpha$ -particles)

#### 2) IRST-Trento and CNM Barcelona (since 2003)

CNM: Hole etching (DRIE); IRST: all further processing diffused contacts or doped polysilicon deposition





# **RD50 3D Detectors: New Architecture**





- INFN/Trento funded project: collaboration between IRST.
  - Trento and CNM Barcelona
- Simulation
  - CCE within < 10 ns
  - worst case shown
     (hit in middle of cell)

#### • Simplified 3D architecture

- n<sup>+</sup> columns in p-type substrate, p<sup>+</sup> backplane
- operation similar to standard 3D detector

#### • Simplified process

- hole etching and doping only done once
- no wafer bonding technology needed



# Summary



- At fluences up to 10<sup>15</sup>cm<sup>-2</sup> (Outer layers of a SLHC detector) the change of the depletion voltage and the large area to be covered by detectors is the major problem.
  - CZ silicon detectors could be a cost-effective radiation hard solution

(no type inversion, use p-in-n technology)

- oxygenated p-type silicon microstrip detectors show very encouraging results:  $CCE \approx 6500 \text{ e}; \Phi_{eq} = 4 \times 10^{15} \text{ cm}^{-2}, 300 \mu \text{m}, \text{ collection of electrons}$
- At the fluence of 10<sup>16</sup>cm<sup>-2</sup> (Innermost layer of a SLHC detector) the active thickness of any silicon material is significantly reduced due to trapping. The two most promising options so far are:

Thin/EPI detectors : drawback: radiation hard electronics for low signals needed

e.g. 2300e at  $\Phi_{eq}$  8x10<sup>15</sup>cm<sup>-2</sup>, 50µm EPI, .... thicker layers will be tested in 2005

**3D detectors** : drawback: technology has to be optimized

..... steady progress within RD50

• New Materials like SiC and GaN have been characterized (not shown). CCE tests show that these materials are not radiation harder than silicon



# What next ?



# Where should RD50 and the ATLAS experiment start to collaborate now?

# **RD50 RD50** Workplan for 2005 (1/2)



|                                                                                                                    | Characterization of irradiated silicon:                                                                                 |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Defect and Material<br>Characterization                                                                            | <ul> <li>understanding of defect clusters</li> </ul>                                                                    |
|                                                                                                                    | <ul> <li>defects in hydrogenated silicon</li> </ul>                                                                     |
|                                                                                                                    | understanding of radiation induced shallow donors                                                                       |
|                                                                                                                    | Influence of oxygen dimers on radiation damage                                                                          |
|                                                                                                                    | • SiC: study of dominant radiation-induced defects                                                                      |
|                                                                                                                    |                                                                                                                         |
| Defect Engineering                                                                                                 | <ul> <li>Processing of High resistivity n- and p-type MCZ-silicon</li> </ul>                                            |
|                                                                                                                    | <ul> <li>Processing of epitaxial silicon layers of different thickness</li> </ul>                                       |
| produce structured                                                                                                 | <ul> <li>Hydrogenation of silicon detectors</li> </ul>                                                                  |
| strip) from new materials                                                                                          | Optimization of oxygen-dimer enriched silicon                                                                           |
| Pad Detector                                                                                                       | • Characterization (IV, CV, CCE with α- and <b>b-particles</b> ) of test structures produced with the common RD50 masks |
| Characterization •                                                                                                 | • Common irradiation program with fluences up to 10 <sup>16</sup> cm <sup>-2</sup>                                      |
| New Materials • Systematic studies up to 10 <sup>16</sup> cm <sup>-2</sup> to verify the observed radiation damage |                                                                                                                         |



| •                                                 | Production of 3D detectors made with n <sup>+</sup> columnar electrodes in p-<br>type substrate                                                                                                                                                                                                                             |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                 | Production of 3D devices with both P and B doping                                                                                                                                                                                                                                                                           |
| •<br>New Structures                               | Measurement of charge collection before and after irradiation of<br>the processed 3D detectors                                                                                                                                                                                                                              |
| •                                                 | Evaluate charge collection before and after irradiation of semi-3D detectors with LHC like electronics.                                                                                                                                                                                                                     |
| test structured devices<br>with your fast readout | Finalize charge collection tests of thinned detectors (50-100 $\mu$ m) up to fast hadron fluences of $10^{16}$ cm <sup>-2</sup>                                                                                                                                                                                             |
| electronic<br>•<br>Full Detector<br>Systems<br>•  | <ul> <li>Production, irradiation and test of common segmented structures (n- and p-type FZ, DOFZ, MCz and EPI)</li> <li>Continue activities linked to LHC experiments</li> <li>Determination of the SLHC survival scenario of microstrip and pixel detectors when coupled to the available LHC speed electronics</li> </ul> |

# Summary



- At fluences up to 10<sup>15</sup>cm<sup>-2</sup> (Outer layers of a SLHC detector) the change of the depletion voltage and the large area to be covered by detectors is the major problem.
  - CZ silicon detectors could be a cost-effective radiation hard solution
    - (no type inversion, use p-in-n technology)
  - oxygenated p-type silicon microstrip detectors show very encouraging results:  $CCE \approx 6500 \text{ e}; \Phi_{eq} = 4 \times 10^{15} \text{ cm}^{-2}, 300 \mu \text{m}$
- At the fluence of 10<sup>16</sup>cm<sup>-2</sup> (Innermost layer of a SLHC detector) the active thickness of any silicon material is significantly reduced due to trapping. The two most promising options so far are: Thin/EPI detectors : drawback: radiation hard electronics for low signals needed (e.g. 2300e at Φ<sub>eq</sub> 8x10<sup>15</sup>cm<sup>-2</sup>, 50µm EPI)
   3D detectors : drawback: technology has to be optimized
- New Materials like SiC and GaN have been characterized. First CCE test indicate that these materials are not significantly radiation harder than silicon

**Further information: http://cern.ch/rd50/**