

Radiation tolerant materials for semiconductor tracking detectors at SuperLHC

Mara Bruzzi

INFN, Dipartimento Energetica, University of Florence, Italy

✓ Motivation to develop radiation harder detectors

✓ Introduction to the RD50 collaboration

✓ Radiation Damage

✓ Material Engineering

✓ Summary

Large Scale Application of Si Detectors in High Energy Physics **Experiments**

LHC: Present working conditions:

 $L \sim 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ within 10 years fast hadron fluence:

f ~ 10¹⁵ n/cm² for pixels
f ~ 10¹⁴ n/cm² for microstrips

LHC upgrade ("Super-LHC" ... later than 2010)

 $L \sim 10^{35} \text{ cm}^{-2} \text{s}^{-1} \implies \text{fluence up to } 10^{16} \text{ cm}^{-2} \text{ after five years}$

R&D needed for the development of a detector technology able to operate safely and efficiently in such an environment.

Anticipated Radiation Environment for Super LHC

Hadron fluence and radiation dose in different radial layers of the CMS tracker for an integrated luminosity of 2500fb⁻¹. (CERN-TH/2002-078)

Radius (cm)	Fluence of fast hadrons [cm ⁻²]	Dose [KGy]	
4	1.6x10 ¹⁶	4200	
11	2.3×10^{15}	940	
22	8.0x10 ¹⁴	350	
75	1.5×10^{14}	35	
115	$1.0 x 10^{14}$	9.3	

Proposal to split the tracker volume into 3 radial regions:

1.	R > 60cm	improved Si strip technology
2.	20cm < R < 60cm	improved hybrid pixel technology
3.	R < 20cm	new approaches and concepts required

Status of radiation-hard materials for tracking detectors

	C;	at SLHC	Diamond			
rroperty	51	17 milliont - •	Diamond	411 SIC		
Material Quality	Cz, FZ, epi	Polycrystalline	single crystal	epitaxial		
E _g [eV]	1.12	5.5	5.5	3.3		
E _{breakdown} [V/cm]	3·10 ⁵	10 ⁷	10 ⁷	2.2·10 ⁶		
m [cm ² /Vs]	1450	1800	>1800	800		
$\mathbf{m} [\mathrm{cm}^2/\mathrm{Vs}]$	450	1200	>1200	115		
v _{sat} [cm/s]	$0.8 \cdot 10^7$	$2.2 \cdot 10^7$	$2.2 \cdot 10^7$	2.10^{7}		
Ζ	14	6	6	14/6		
e r	11.9	5.7	5.7	9.7		
e-h energy [eV]	3.6	13	13	7.6		
Density [g/cm3]	2.33	3.515	3.515	3.22		
Displacem. [eV]	13-20	43	43	25		
e-h/ m m for mips	89	36	36	55		
Max initial ccd [m n]	>500	280	550	40 (= thickness)		
Max wafer f tested	6"	6"	6mm	2"		
Producer	Several	Element-Six	Element-Six	Cree-Alenia, IKZ		
Max f luence[cm ⁻²]	7x10 ¹⁵ 24GeV	2×10^{15} n, p , p	Not reported	10 ¹⁶ in progress		
	р					
CERN R&Ds	RD50, RD39	RD42	RD42	RD50		
See H. Kagan Talk See Kinoshita Talk						

RD-2 SITP (1990-1994)

CERN R&Ds for LHC

Study of a Tracking/Preshower Detector for the LHC

RD-8 GAASWORKS (1991-1995)

Development of GaAs Detectors for Physics at the LHC

RD-19 PIXEL (1991-2000)

Development of Hybrid and Monolithic Silicon Micropattern Detectors

RD-20 Si TRACKER(1990-1994)

Development of High Resolution Si Strip Detectors for Experiments at High Luminosity LHC

RD39 SMSD (1994 – present)

Cryogenic Tracking Detectors ® J. Harkonen talk, this session

RD42 (1994 – present) **B** H. Kagan talk, this session
Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC

RD48 ROSE (1996-2000) Radiation Hardening of Silicon Detector

RD49 RADTOL (1997-2000) Studying Radiation Tolerant ICs for LHC

RD50 (2002 -)

Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders

The RD50 CERN Collaboration

Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

- Collaboration formed in November 2001 http://www.cern.ch/rd50
- Experiment approved as RD50 by CERN in June 2002
- Main objective:

Development of ultra-radiation hard semiconductor detectors for the luminosity upgrade of the LHC to 10³⁵ cm⁻²s⁻¹ ("Super-LHC").

Challenges: - Radiation hardness up to 10¹⁶ cm⁻² required

- Fast signal collection (10 ns bunch crossing)
- Low mass (reducing multiple scattering close to interaction

point)

- Cost effectiveness

• Presently 280 Members from 55 Institutes

Belgium (Louvain), Canada (Montreal), Czech Republic (Prague (2x)), Finland (Helsinki (2x), Oulu), Germany (Berlin, Dortmund, Erfurt, Halle, Hamburg, Karlsruhe), Greece (Athens), Israel (Tel Aviv),
Italy (Bari, Bologna, Florence, Milano, Modena, Padova, Perugia, Pisa, Trento, Trieste, Turin), Lithuania (Vilnius), Norway (Oslo (2x)), Poland (Warsaw), Romania (Bucharest (2x)), Russia (Moscow (2x), St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona, Valencia), Sweden (Lund) Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Exeter, Glasgow, Lancaster, Liverpool, London, Sheffield,
University of Surrey), USA (Fermilab, Purdue University, Rutgers University, Syracuse University, BNL, University of New Mexico)

Scientific strategies

- Material Engineering
 - Defect and Material Characterisation
 - Defect engineering of silicon
 - New detector materials (SiC, ..)
- Device Engineering
 - Improvement of present planar detector structures (3D detectors, thin detectors, cost effective detectors,...)
 - Tests of LHC-like detector systems produced with radiationhard technology

Charge Collection Efficiency

Limited by:

Partial depletion Trapping at deep levels Type inversion

Collected Charge: $\mathbf{Q} = \mathbf{Q}_{o} \cdot \boldsymbol{e}_{dep} \cdot \boldsymbol{e}_{trap}$ $\boldsymbol{e}_{dep} = \frac{d}{W} \quad \boldsymbol{e}_{trap} = e^{-\frac{\boldsymbol{t}_{c}}{\boldsymbol{t}_{t}}}$

Trapping time reduced by radiation: Krasel et al. (RD50) for e/h up to 10¹⁵ cm⁻² n- Si:

W: total thickness d: Active thickness τ_c : Collection time τ_t : Trapping time Al depleted Al p^+ inverted p^+ n^+ p^+ inverted n^+ Read-out electronics

before inversion

after inversion neglecting double junction

Defect Engineering of Silicon

Influence the defect kinetics by incorporation of impurities or defects: <u>Oxygen</u>

Initial idea: Incorporate Oxygen to getter radiation-induced vacancies \Rightarrow prevent formation of Di-vacancy (V₂) related deep acceptor levels

Different kind of Si materials investigated by RD50

Material	Symbol	r Wcm	[O _i] cm ⁻³
Standard n- or p-type FZ	STNFZ	$1-7 \cdot 10^{3}$	< 5 10 ¹⁶
Diffusion Oxygenated FZ p- or n-type	DOFZ	$1-7 \cdot 10^{3}$	~ 1-2 10 ¹⁷
Epi-layer 50 µm on CZ n-type ITME	EPI	50-100	substrate: 1 · 10 ¹⁸
Czochralski Sumitomo, Japan	CZ	$1.2 \cdot 10^{3}$	~ 8-9 10 ¹⁷
Magnetic Czochralski Okmetic Finland	MCZ	$1.2 \cdot 10^{3}$	~ 5-9 10 ¹⁷

Czochralski Si See also talk of J. Harkonen

- Very high Oxygen content 10¹⁷-10¹⁸cm⁻³ (Grown in SiO₂ crucible)
- High resistivity (>1kΩcm) available only recently (Magnetic CZ technology)
- CZ wafers cheaper than FZ (**RF-IC industry got interested**)

DOFZ Si: Spectacular Improvement of γ -irradiation tolerance

- No type inversion for oxygen enriched silicon!
- Slight increase of positive space charge (due to Thermal Donor generation?)

[E.Fretwurst et al. 1st RD50 Workshop] See also:

- Z.Li et al. [NIMA461(2001)126]
- Z.Li et al. [1st RD50 Workshop]
- Leakage increase not linear and depending on oxygen concentration

Characterization of microscopic defects $-\gamma$ -irradiated silicon detectors -

•<u>For the first time</u> macroscopic changes of the depletion voltage and leakage current can be explained by electrical properties of measured defects → <u>Major breakthrough!</u> I.Pintilie et al., Applied Physics Letters,82, 2169, March 2003

- Levels responsible for macroscopic changes after γ-irradiation:
- I-defect: acceptor level at E_C-0.54eV (coming up for approx. 85% of damage) <u>peculiarity</u>: quadratic dose dependence ⇒ is this the V₂O defect ?
- Γ -defect: acceptor level at E_V +0.68eV (coming up for approx. 10% of damage)
- BD-defect: bistable shallow thermal donor (important in oxygen enriched silicon)

Discrepancy between CCE and CV analysis with p⁺n devices

In segmented p⁺n detectors read-out with LHC-like electronics above the CV-derived depletion voltage, the CCE continues to rise significantly with bias. To maximise CCE overdepletion $V_{CCE} \sim 2V_{dep}$ is needed both in n-type standard and oxygenated Si.

Same behavior for standard and oxygenated (DOFZ), <100> and <111>Si

The beneficial effect of oxygen in proton irradiated DOFZ p⁺n Si microstrips almost disappear in CCE measurements due to type inversion. Better results achieved with n-in-n detectors.

Mara Bruzzi, Radiation tolerant materials for semiconductor tracking detectors at SuperLHC, 5th STD Hiroshima, June 15, 2004

Recent results with n-in-p microstrip detectors

Liverpool & CNM-Barcelona within RD50 Data presented by G. Casse at Vienna Conference, February 2004

☐ Miniature n-in-p microstrip detectors (280mm thick) produced by CNM-Barcelona using a mask-set designed by the University of Liverpool.

Detectors read-out with a SCT128A LHC speed (40MHz) chip

☐ Material: standard p-type and oxygenated (DOFZ) p-type

□ Irradiation: 24GeV protons up to 3 10¹⁵ p cm⁻² (standard) and 7.5 10¹⁵ p cm⁻² (oxygenated)

CCE ~ 60% after 3 10¹⁵ p cm⁻² at 900V(standard p-type)

CCE ~ 30% after 7.5 10¹⁵ p cm⁻² 900V (oxygenated p-type)

At the highest fluence Q~6500e at V_{bias} =900V corresponding to: ccd~90 μ m

n-type Czochralski Si

- No type inversion (SCSI)
- Reverse current and charge trapping comparable to FZ silicon
- Charge collection efficiency under study

Epitaxial silicon

Motivation: After 1 MeV neutron irradiation to 10¹⁵ cm⁻² the effective drift length for e is ~150**nm** and for h ~50**nm**

P use thin detectors (50-100mm) from the beginning, with low resistivity Epitaxial Si

50mm, 50Wcm on CZ Si made by ITME (Warsaw)

- Leakage current almost identical to CZ, FZ, DOFZ detectors
- CCE with β -source under study

New Materials: Epitaxial SiC

Semi-Insulating SiC •

- $-\rho > 10^{11}\Omega$ cm due to vanadium compensation
- CCE 60% in as-grown, ~55% after irradiation with 10^{13} cm⁻² 300 MeV/c π
- Vanadium is responsible of incomplete charge collection

Epitaxial 4H-SiC

- 6 new 2" wafers d~50 μ m, N_{eff}=5·10¹³cm⁻³ produced by CREE and IKZ, Berlin
- Common RD50 test structures produced and irradiated

p⁺n junction detector

Epitaxial SiC Schottky Barriers

n epilayer N_{eff} ~5¹⁰¹³cm⁻³ 40mm by IKZ Berlin on CREE substrate;
 Schottky contacts

- **•** No priming / polarization effects observed
- ♦ Charge collection efficiency tested with **a**s ²⁴¹Am and **b** ⁹⁰Sr

100% before irradiation: 2200e with mips

Data from F. Nava, S. Sciortino, M. Bruzzi et al., IEEE Trans. Nucl. Sci, (2004)

Proton-irradiation induced defects in epitaxial 4H-SiC Schottky Barriers

- n epilayer 7mm
- ♦ N_{eff} ~7 ~ 10¹⁵ cm⁻³
- Schottky Barriers Ti or Ni
- Ohmic contacts Ti/Ni/Ag
- Deep levels by C-DLTS
- ♦ 6.5MeV p up to 6.4x10¹³cm⁻²

Six traps detected after irradiation. High generation coefficients.

◆E = 0.18 - 1.22eV

• $\mathbf{s} = 10^{-13} \cdot 10^{-18} \text{ cm}^{-2}$

• $N_t = 10^{11} - 5 \times 10^{14} \text{ cm}^{-3}$

Data from A. Castaldini, A. Cavallini et al.

Devices irradiated up 10¹⁶ cm⁻² 24GeV protons (CERN) and fast neutrons (Ljubljana). Measurements are in progress.

Device Engineering: 3D detectors

proposed by Sherwood Parker

- Electrodes:
 - narrow columns along detector thickness-"3D"
 - **diameter:** 10μm **distance:** 50 100μm
- Lateral depletion:
 - lower depletion voltage needed
 - thicker detectors possible
 - fast signal
- Hole processing :
 - Dry etching, Laser drilling, Photo Electro Chemical
 - Present aspect ratio (RD50) 13:1, Target: 30:1
- Electrode material
 - Doped Polysilicon

see S. Parker talk, June 17

Advantage: application possible with all radiation-hard materials.

Within RD50, IRST-Trento is developing 3D detectors, in collaboration with CNMBarcelona.See M. Boscardin talk, June 17

nL

Summary

- Possible radiation hard materials for tracker detectors at SuperLHC have been selected by CERN R&Ds as: Defect engineered Si, diamond (poly- and singlecrystal) and epitaxial SiC.
- Si (RD50): At the fluence of 10¹⁶cm⁻² (Innermost layer of a SLHC detector) the active thickness of any material is significantly reduced due to trapping. Promising results of CCE on microstrip n-in-p detectors produced with oxygenated Si irradiated up to 7x10¹⁵ [24GeVp/cm²] have been measured within RD50: 6500e corresponding to 90mm ccd. The effect of oxygen in CCE on CZ Si is still under study.
- SiC (RD50): 100% CCE over 40mm epilayer (2200e). Thicker epilayers needed (up to 100mm). Radiation hardness under study.
- Diamond polycrystalline (RD42)*: achieved 270mm ccd (mp signal: 8000e), deteriorates to 80% after 2x10¹⁵cm⁻² 24GeV p, need to extend measurements to 10¹⁶cm⁻².
- Diamond single crystal (RD42)*: achieved 550mm CCE. Limited size of 6mm diameter, no radiation hardness study available in literature.
 *Data from RD42, NIMA Sept. 2003, more on H.Kagan talk