

Silicon and other sensor materials for CMS upgrade

Mara Bruzzi on behalf of the RD50 Collaboration INFN, University of Florence, Italy

Large Scale Application of Si Detectors in LHC

 $L \sim 10^{35} \text{ cm}^{-2} \text{s}^{-1} \implies \text{fluence up to } 10^{16} \text{ cm}^{-2} \text{ after five years}$

R&D needed for the development of a detector technology able to operate safely and efficiently in such an environment.

Anticipated Radiation Environment for Super LHC

Hadron fluence and radiation dose in different radial layers of the CMS tracker for an integrated luminosity of 2500fb⁻¹. (CERN-TH/2002-078)

Radius [cm]	Fluence of fast hadrons [cm ⁻²]	Dose [KGy]
4	1.6x10 ¹⁶	4200
11	2.3x10 ¹⁵	940
22	8.0x10 ¹⁴	350
75	1.5×10^{14}	35
115	$1.0 \mathrm{x} 10^{14}$	9.3

The tracker volume can be splitted into 3 radial regions:

1.	R > 60cm	improved Si strip technology
2.	20cm < R < 60cm	improved hybrid pixel technology
3.	R < 20cm	new approaches and concepts required

The RD50 CERN Collaboration

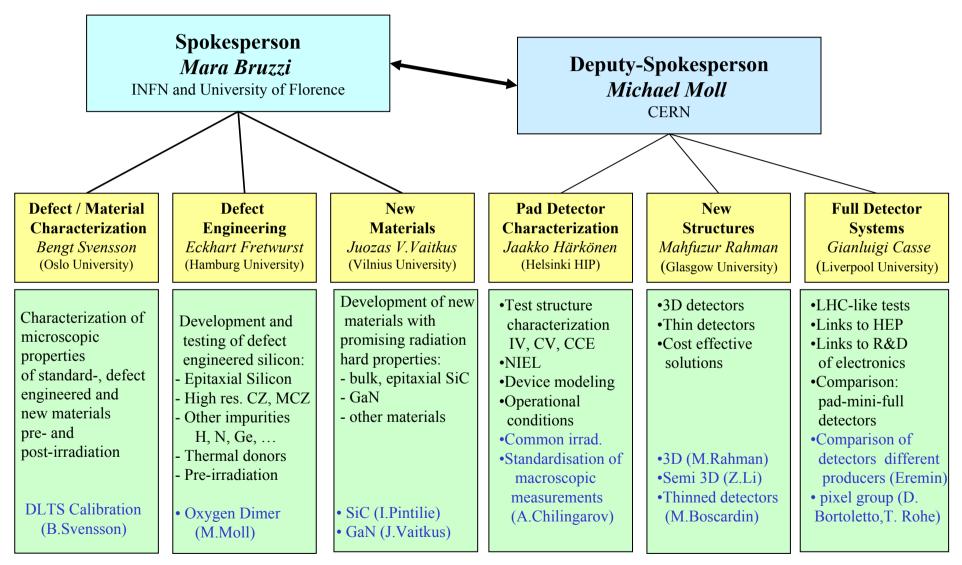
Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

- Collaboration formed in November 2001 http://www.cern.ch/rd50
- Experiment approved as RD50 by CERN in June 2002
- Main objective:

Development of ultra-radiation hard semiconductor detectors for the luminosity upgrade of the LHC to 10³⁵ cm⁻²s⁻¹ ("Super-LHC").

• Presently 272 Members from 52 Institutes

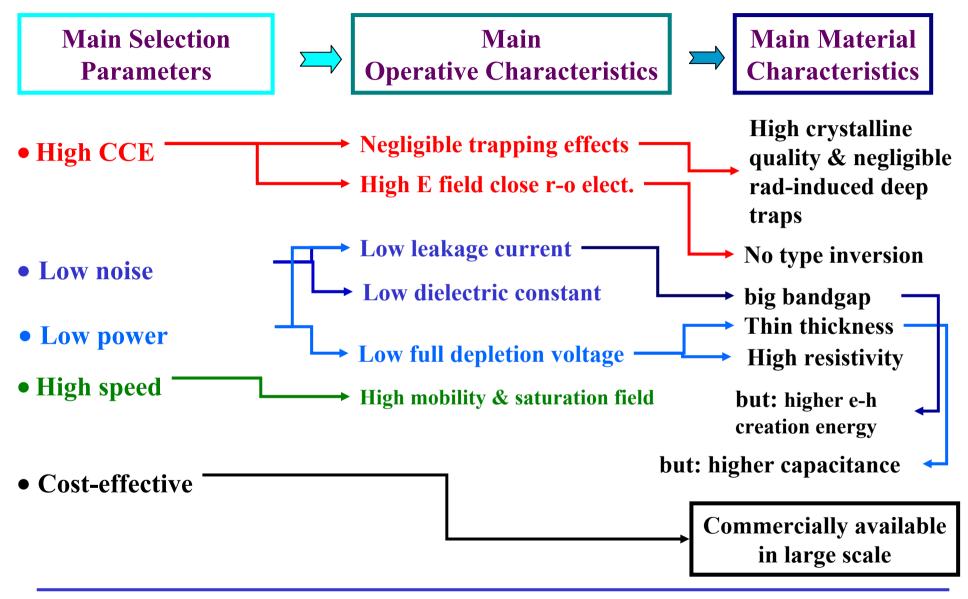
Belgium (Louvain), Canada (Montreal), Czech Republic (Prague (2x)), Finland (Helsinki (2x), Oulu), Germany (Berlin, Dortmund, Erfurt, Halle, Hamburg, Karlsruhe), Greece (Athens), Israel (Tel Aviv), Italy (Bari, Bologna, Florence, Milano, Modena, Padova, Perugia, Pisa, Trento, Trieste, Turin), Lithuania (Vilnius), Norway (Oslo (2x)), Poland (Warsaw), Romania (Bucharest (2x)), Russia (Moscow (2x), St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona, Valencia), Sweden (Lund) Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Exeter, Glasgow, Lancaster, Liverpool, London, Sheffield, University of Surrey), USA (Fermilab, Purdue University, Rutgers University, Syracuse University, BNL, University of New Mexico, University of California Santa Cruz)


- CMS groups in RD50: Helsinki HIP, Karlsruhe University, Louvain University, INFN Bari-Florence-Perugia-Pisa, Purdue University, PSI-Villigen, Rutgers University..
- Several RD50 groups are within ATLAS, LHCb, ALICE, CDF and other experiments

Scientific strategies

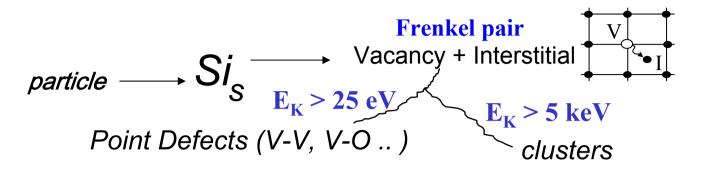
- Material Engineering
 - Defect and Material Characterisation
 - Defect engineering of silicon
 - New detector materials (SiC, ..)
- Device Engineering
 - Improvement of present planar detector structures
 (3D detectors, thin detectors, cost effective detectors,...)
 - Tests of LHC-like detector systems produced with radiationhard technology
 - Variation of the operational conditions

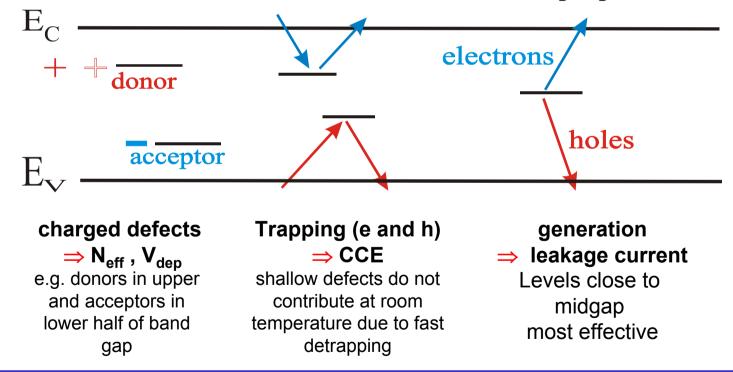
Scientific Organization of RD50


Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

RADIATION FACILITIES within RD50

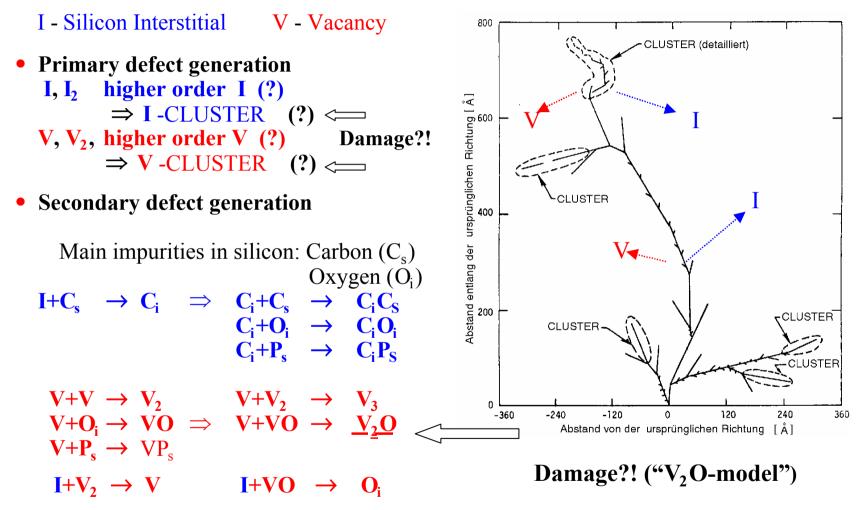
- 24 GeV/c protons, PS-CERN up to 10¹⁶ cm⁻²
- TRIGA reactor neutrons, Ljubljana up to 1x10¹⁶ cm⁻²
- 26 MeV protons, Karlsruhe
 1E14/cm2 on 10x10 cm2 in 10 minutes
- 10-50 MeV protons, Jyvaskyla +Helsinki up to 3x10¹⁴ cm⁻²
- ⁶⁰Co dose, BNL, USA up to 1.5GRad
- **58** MeV Li ions, Legnaro/ Padova
- 900 MeV electrons, Trieste
- 15MeV electrons, Oslo


Selecting radiation- hard materials for tracker detectors at SuperLHC


Rad-Hard Materials presently under investigation

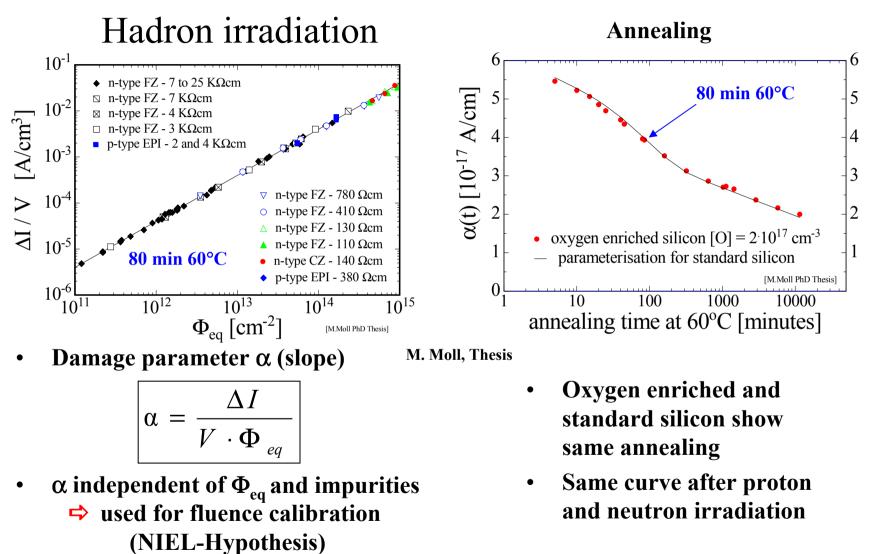
Property	Si	SiC	GaN	Diamond	
Material Quality	Cz, FZ,	4H, 6H	EPI: MOSVD	Polycrystalline	single crystal
	DOFZ, epi	Epi/bulk		CVD	CVD
E _g [eV]	1.12	3.3	3.39	5.5	5.5
E _{breakdown} [V/cm]	3.10 ⁵	$2.2 \cdot 10^{6}$	4·10⁶	10 ⁷	10 ⁷
$\mu_{\rm e} [{\rm cm}^2/{\rm Vs}]$	1450	800	1000	1800	>1800
$\mu_h [cm^2/Vs]$	450	115	100-350	1200	>1200
v _{sat} [cm/s]	0.8·10 ⁷	2.10^{7}	2.10^{7}	2.2·10 ⁷	$2.2 \cdot 10^7$
Ζ	14	14/6	31/7	6	6
E r	11.9	9.7	9.6	5.7	5.7
e-h energy [eV]	3.6	7.6	8.9	13	13
Density [g/cm ³]	2.33	3.22	6.15	3.515	3.515
e-h/µm for mips	89	55		36	36
Max initial ccd [µm]	>500	40	12.5	280	500
Max wafer \$ tested	6"	2"	2"	6"	6mm
Producer	Several	Cree-Alenia, IKZ-IMM, Okmetic	Lumilog	Element-Six	Element-Six
Max f luence[cm ⁻²]	10 ¹⁶ 24 GeV		10 ¹⁶ 24GeV p,	$2x10^{15}$ n, π , p	-
	p, 1MeVn		1MeV n		
CERN R&Ds	RD50 ,	RD50	RD50	RD42	RD42
RD39 Cryogenic operation					

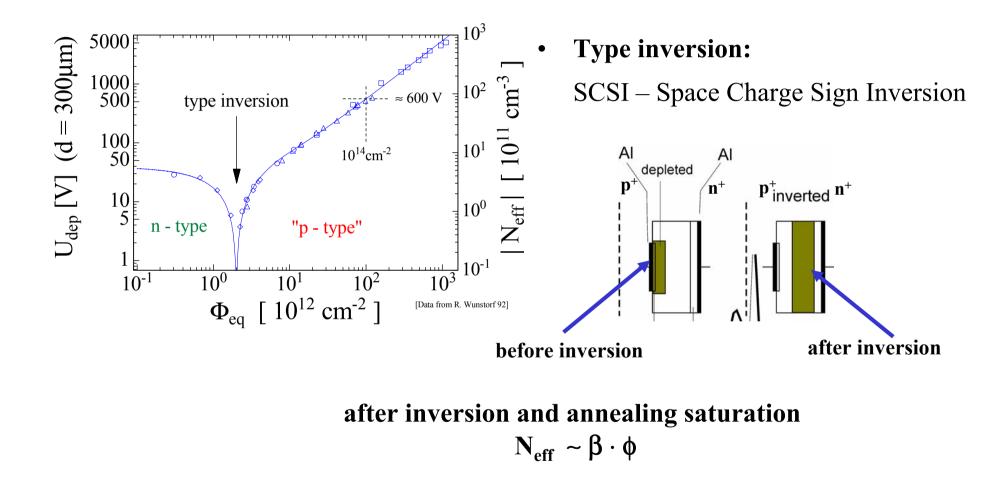
Radiation Induced Microscopic Damage in Silicon

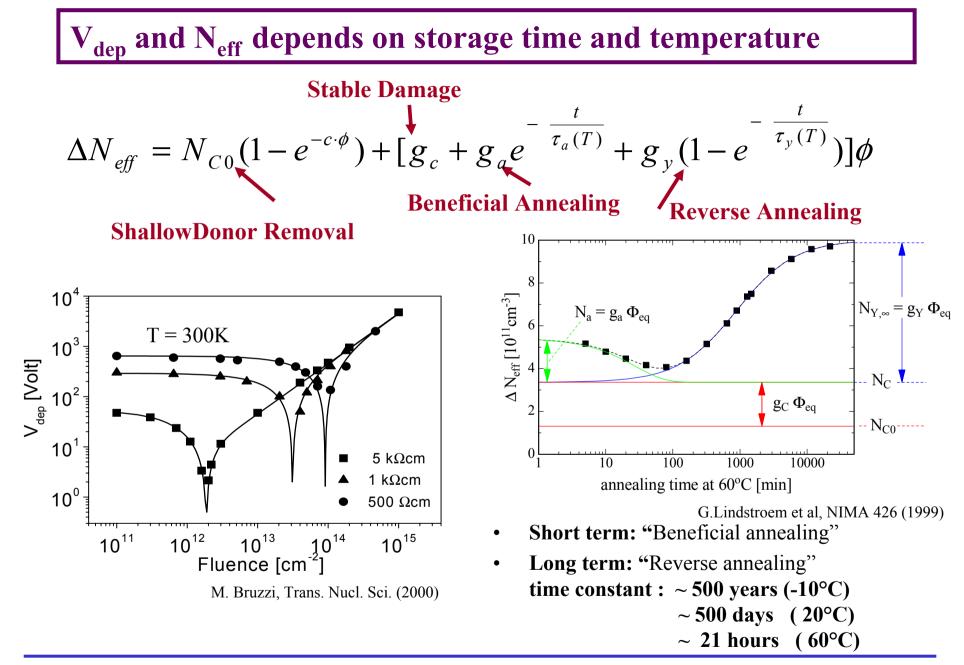


Influence of defects on the material and device properties

RD50 Primary Damage and secondary defect formation


• Two basic defects


Trap parameters of radiation induced point-defects in Si


Defect	Trap Param	neters	References	
	E [eV]	σ [cm ²]		
V-0	Ec-0.18	1×10^{-14}	Svensson et al NIMB 106 (1995) 183	
V2	Ec-0.237	$2x10^{-16}$	Svensson et al NIMB 106 (1995) 183	
V ₂ -	Ec-0.42	3.1×10^{-15}	Simoen et al APL 69 (1996) 2858	
C _i O _i	E _v +0.36	$2x10^{-15}$	Moll et al NIMA 388 (1997) 335	
VO ^{-/0}	E _c -0.17,	$9x10^{-15}$,	Pellegrino et al. APL 78 (2001) 3442.	
CiCs ^{-/0}	Ec-0.17	8x10 ⁻¹⁸	Pellegrino et al. APL 78 (2001) 3442.	
Ci	Ec-0.3	$9x10^{-14}$		
P-V	Ec-0.46	$4x10^{-15}$	Pellegrino et al. APL 78 (2001) 3442.	
I defect - acceptor	Ec-0.545	1.7×10^{-15}	Pintilie et al APL 81 (2002) 165	
I defect - donor	$E_v + 0.23$		Pintilie et al APL 81 (2002) 165	
Γ defect -	$E_v + 0.68$		Pintilie et al APL 81 (2002) 165	
acceptor				
X defect acceptor	Ec-0.232	1.3×10^{-16}	Monakhov et al. Phys. Rev. B 65,	
			233207	
X defect acceptor	Ec-0.47	9.6x10 ⁻¹⁵	Monakhov et al. Phys. Rev. B 65,	
			233207	

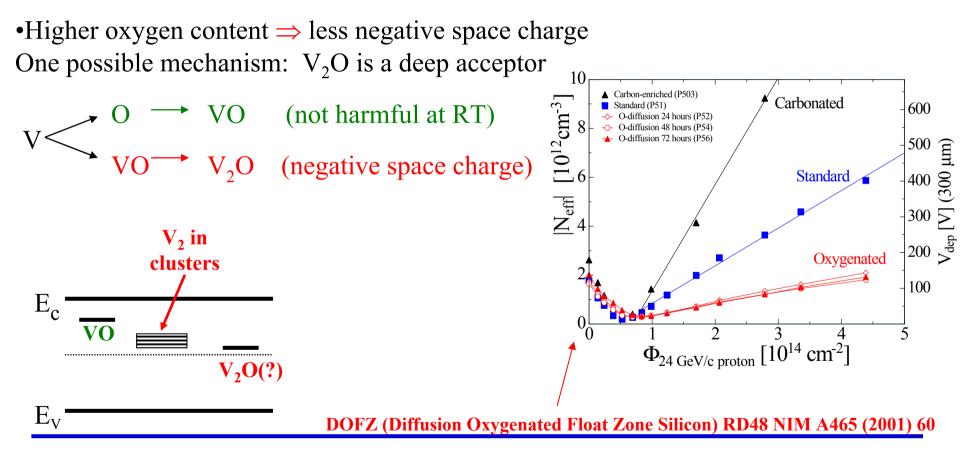
Leakage Current

Depletion Voltage and Effective Space Charge Concentration

Mara Bruzzi for the RD50 Collaboration, Silicon and other sensor materials for CMS upgrade July 13 2004, Imperial College, London

Charge Collection Efficiency

Limited by:

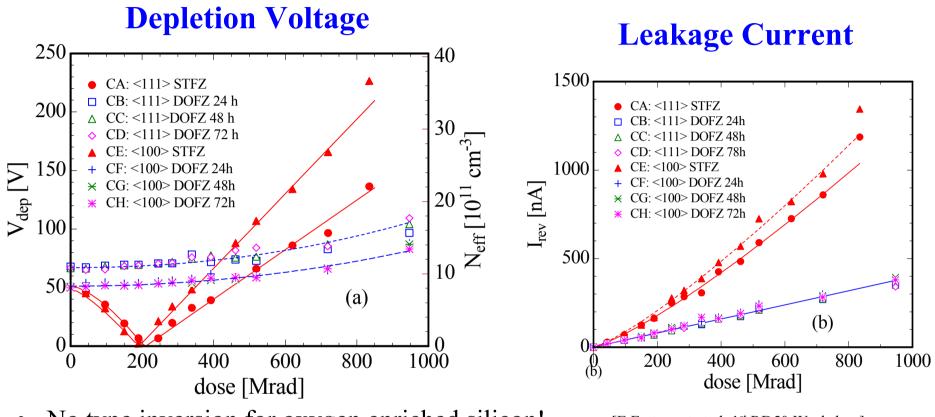

Partial depletion Trapping at deep levels Type inversion (SCSI)

 $\mathbf{Q} = \mathbf{Q}_{o} \cdot \boldsymbol{\mathcal{E}}_{dep} \cdot \boldsymbol{\mathcal{E}}_{trap}$ Collected Charge: $\varepsilon_{dep} = \frac{d}{W} \quad \varepsilon_{trap} =$ depleted \mathbf{p}^+ inverted \mathbf{p}^+ W: total thickness d: Active thickness **Read-out** electronics τ_{c} : Collection time τ_t : Trapping time after inversion before inversion neglecting double junction

Defect Engineering of Silicon

Influence the defect kinetics by incorporation of impurities or defects: <u>Oxygen</u>

Initial idea: Incorporate Oxygen to getter radiation-induced vacancies \Rightarrow prevent formation of Di-vacancy (V₂) related deep acceptor levels


Mara Bruzzi for the RD50 Collaboration, Silicon and other sensor materials for CMS upgrade July 13 2004, Imperial College, London

Different kind of Si materials investigated by RD50

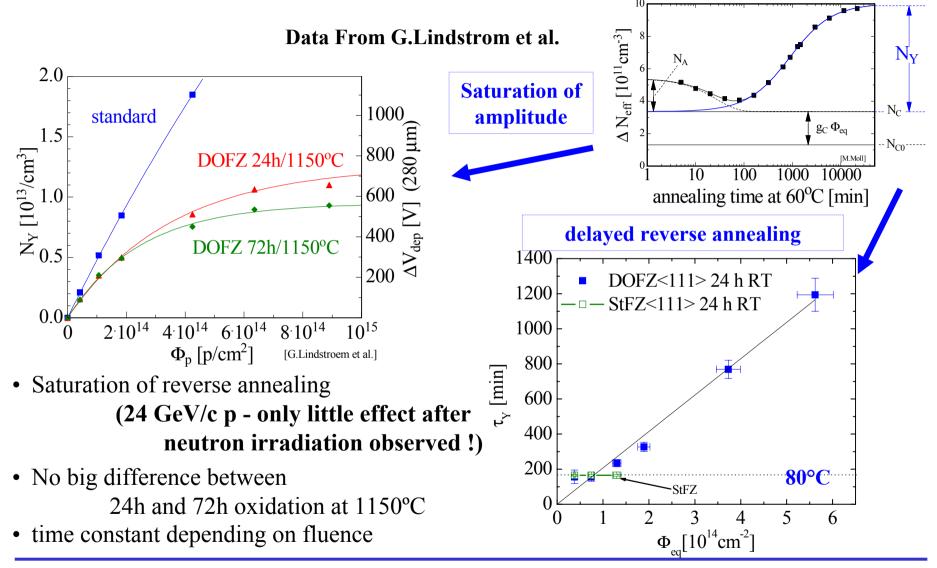
Material	Symbol	ρΩcm	[O _i] cm ⁻³
Standard n-and ptype FZ	STNFZ	$1-7 \cdot 10^{3}$	< 5 10 ¹⁶
Diffusion Oxygenated FZ p and ntype	DOFZ	$1-7 \cdot 10^{3}$	$\sim 1-2 \ 10^{17}$
Epi-layer 50 μm on CZ n-type ITME	EPI	50-100	substrate: 1 · 10 ¹⁸
Czochralski Sumitomo, Japan n-type	CZ	1.2 · 10³	~ 8-9 10 ¹⁷
Magnetic Czochralski Okmetic Finland n-type and p-type	MCZ	$1.2 \cdot 10^{3}$	~ 5-9 10 ¹⁷

Czochralski Si

- Very high Oxygen content 10^{17} - 10^{18} cm⁻³ (Grown in SiO₂ crucible)
- High resistivity (>1KΩcm) available only recently (MCZ & CZ technology)
- CZ wafers cheaper than FZ (**RF-IC industry got interested**)

DOFZ Si: Spectacular Improvement of γ -irradiation tolerance

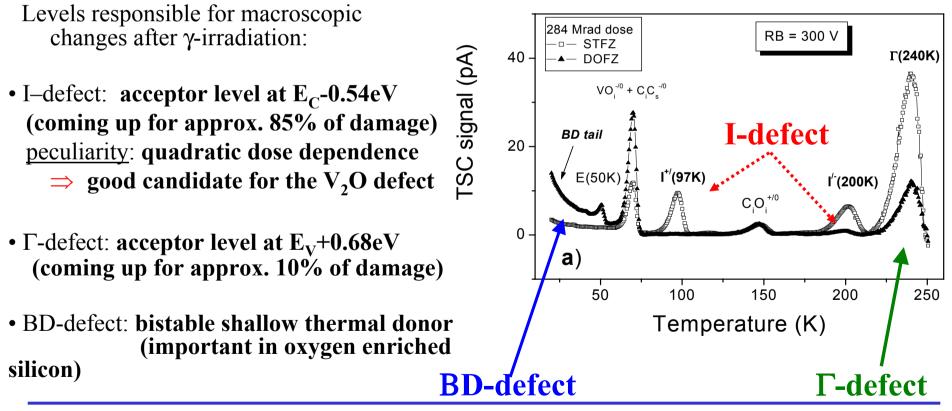
- No type inversion for oxygen enriched silicon!
- Slight increase of positive space charge


[E.Fretwurst et al. 1st RD50 Workshop] See also:

- Z.Li et al. [NIMA461(2001)126]

- Z.Li et al. [1st RD50 Workshop]

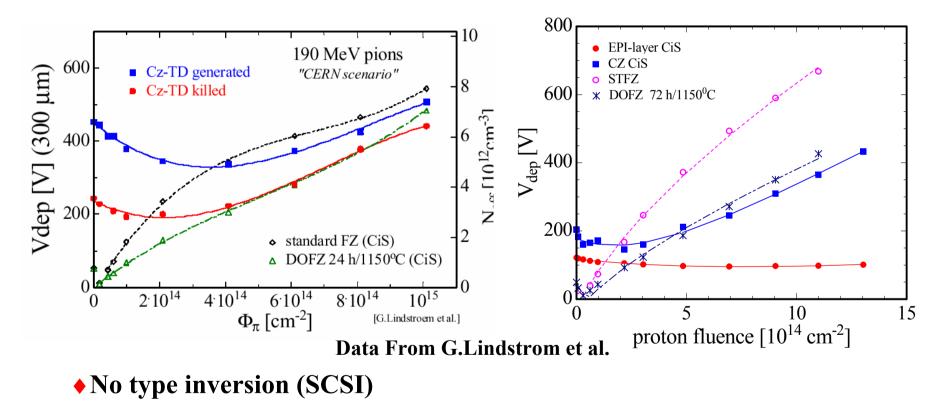
• Leakage increase not linear and depending on oxygen concentration


DOFZ Si Reverse annealing: saturation of amplitude and time constant linearly increasing with fluence

Mara Bruzzi for the RD50 Collaboration, Silicon and other sensor materials for CMS upgrade July 13 2004, Imperial College, London

Characterization of microscopic defects $-\gamma$ -irradiated silicon detectors -

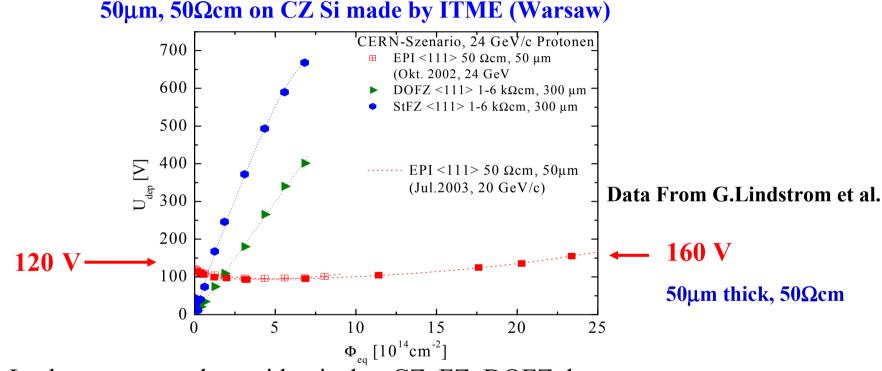
• <u>For the first time</u> macroscopic changes of the depletion voltage and leakage current can be explained by electrical properties of measured defects → <u>Major breakthrough!</u> I.Pintilie et al., Applied Physics Letters,82, 2169, March 2003



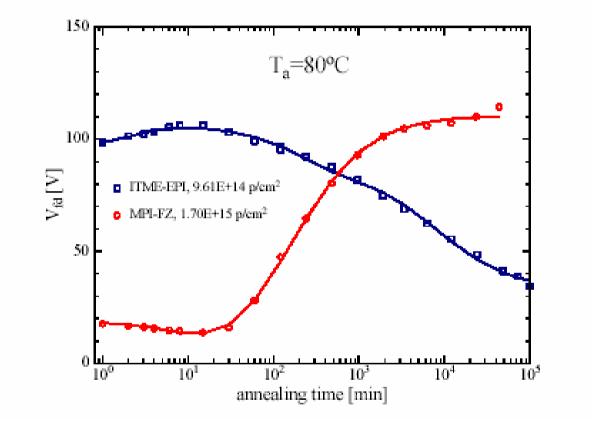
Czochralski & Epitaxial Si

190 MeV π irradiation Villigen Cz from Sumitomo Sitix, Japan

24 GeV/c p irradiation CERN


Cz from Sumitomo Sitix, Japan

Reverse current and charge trapping comparable to FZ silicon


Epitaxial siliconMotivation: After 1 MeV neutron irradiation to 1015 cm-2the effective drift length for e is ~150µm and for h ~50µm

 \Rightarrow use thin detectors (50-100 μ m) from the beginning, with low resistivity Epitaxial Si

- Leakage current almost identical to CZ, FZ, DOFZ detectors
- No-type inversion
- Thickness studied: 25-75µm

different annealing behaviour in epitaxial Si \rightarrow No need of low temperature in maintenance operation of SLHC

E. Fretwurst et al., 4th RD50 Workshop, 4-7 May 2004

Main limitation at high fluence due to electron and hole trapping

Trapping times measured with Transient Current Technique (TCT) within RD50 with different n-type Si materials.

 $1/\tau_{e,h} = \beta_{e,h} \cdot \Phi_{eq} [cm^{-2}]$

<u>Hamburg group</u> $\beta_e = (4.68 \pm 0.15) \cdot 10^{-16} \text{ cm}^2 \text{ ns}^{-1}$

(FZ,DOFZ,CZ) $\beta_{\rm h} = (5.72 \pm 0.50) \cdot 10^{-16} {\rm cm}^2 {\rm ns}^{-1}$

After 24 GeV/c p to a $\Phi_{eq} = 6 \cdot 10^{14} \text{cm}^{-2}$

Dortmund group $\beta_e = (5.13 \pm 0.16) \ 10^{-16} \text{ cm}^2 \text{ns}^{-1}$

(DOFZ) $\beta_{\rm h} = (5.04 \pm 0.18) \ 10^{-16} {\rm cm}^2 {\rm ns}^{-1}$

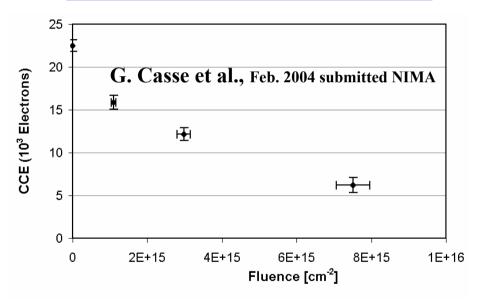
After 24 GeV/c p up to a $\Phi_{eq} = 10^{15} \text{cm}^{-2}$

 $\rightarrow \tau_t \sim 1/\Phi \quad \tau_t \sim 0.2 \text{ ns for } \Phi = 10^{16} \text{ cm}^{-2}$

No significant material difference

Recent results with n-in-p microstrip detectors

Liverpool & CNM-Barcelona within RD50 Data presented by G. Casse at Vienna Conference, February 2004


■ Miniature n-in-p microstrip detectors (280µm thick) produced by CNM-Barcelona using a mask-set designed by the University of Liverpool.

Detectors read-out with a SCT128A LHC speed (40MHz) chip

■ Material: standard p-type and oxygenated (DOFZ) p-type

□ Irradiation: 24GeV protons up to 3 10¹⁵ p cm⁻² (standard) and 7.5 10¹⁵ p cm⁻² (oxygenated) CCE ~ 60% after 3 10¹⁵ p cm⁻² at 900V(standard p-type)

CCE ~ 30% after 7.5 10¹⁵ p cm⁻² 900V (oxygenated p-type)

At the highest fluence Q~6500e at V_{bias} =900V. Corresponds to: ccd~90µm, trapping times 2.4 x larger than previously measured.

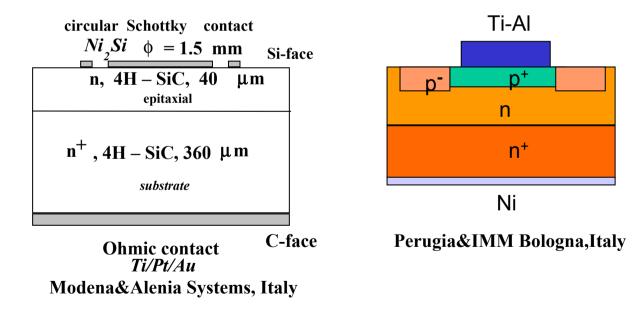
<u>Activity in progress in RD50 on microstrip/pixel detectors with</u> <u>defect engineered Si</u>

Miniature microstrip detectors have been produced or are under process with FZ, DOFZ, MCZ, epitaxial n-type and p-type Si by:

- CNM Barcelona & Liverpool
- IRST-Trento & italian groups (INFN)
- Helsinki HIP
- Common RD50 process is under way

Pixels are currently in process:

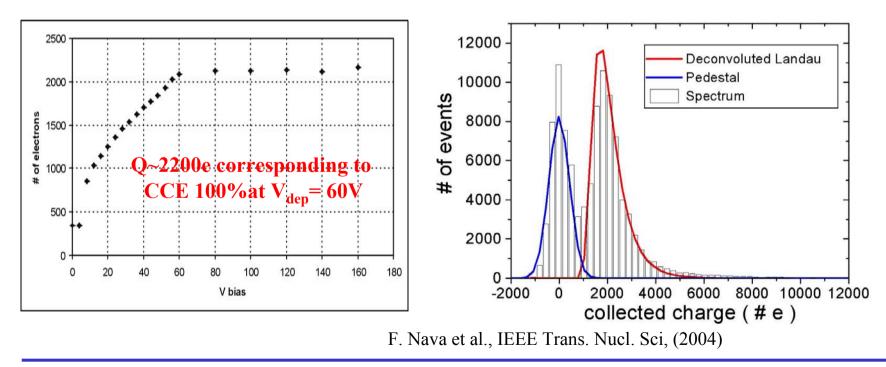
- MCz, FZ, DOFZ n-type Si with Sintef using CMS/FPix masks (Purdue)
- MCz n-type Si with pixel and strips at BNL (Purdue, Rochester, BNL)
- CMOS Active Pixel Detectors (Perugia) see D. Passeri talk next session


Silicon Carbide detectors

• Semi-Insulating SiC

- CCE 60% in as-grown CREE vanadium compensated, ~55% after irradiation with $10^{13} cm^{-2}$ 300 MeV/c π

- Vanadium-free semi-insulating material from Okmetic: ${\sim}100\%$ CCE in unirradiated material


- Epitaxial SiC
 - 6 new 2" wafers d~50 μ m, N_{eff} \geq 5·10¹³cm⁻³ produced by IKZ, Berlin
 - Common RD50 test structures produced and irradiated. Tests in progress
 - 100% CCE in unirradiated material

First charge collection tests on epitaxial SiC

♦ n epilayer N_{eff} ~5×10¹³ cm⁻³ 40µm by IKZ Berlin on CREE substrate;
 Schottky contacts

- No priming effects observed
- CCE tested with β^{90} Sr (2µs shaping time) 2200e at V_{dep} = 60V

Mara Bruzzi for the RD50 Collaboration, Silicon and other sensor materials for CMS upgrade July 13 2004, Imperial College, London

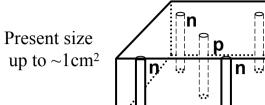
Device Engineering: thin detectors

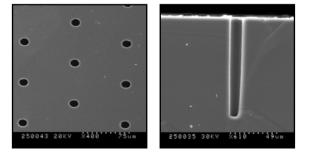
• Benefits:

- low operating voltage
- improved radiation tolerance: 50-200µm thick, lower initial resistivity needed
- •Drawbacks:
 - Lower mip signal in the low fluence range
- •Technical Approaches:
 - Epitaxial Si device (shown before)
 - Thinning with chemical attacks and micro-machining

• Thin Si pad detectors have been produced by ITC-IRS Trento thickness 50-100µm, irradiated at CERN up to 10¹⁶cm⁻² 24GeV p

- \bullet Purdue is currently processing thin segmented detectors with Micron (150-200 μn
- Miniature microstrip detectors have been produced IRST-Trento on epi Si 50µm th


Device Engineering: 3D detectors


proposed by Sherwood Parker

- Electrodes:
 - narrow columns along detector thickness-"3D"
 - diameter: $10\mu m$ distance: $50 100\mu m$
- Lateral depletion:
 - lower depletion voltage needed
 - thicker detectors possible
 - fast signal
- Hole processing :
 - Dry etching, Laser drilling, Photo Electro Chemical
 - Present aspect ratio (RD50) 13:1, Target: 30:1
- Electrode material
 - Doped Polysilicon

Advantage: application possible with all radiation-hard materials. Within RD50, IRST-Trento is developing 3D detectors, in collaboration with CNM Barcelona and Glasgow groups.

Other activities: semi-3D detectors (BNL&US groups)

n

p

n

Summary

- Radiation hard materials for tracker detectors at SuperLHC are under study by the CERN RD50 collaboration.
- At the fluence of 10¹⁶cm⁻² (Innermost layer of a SLHC detector) the active thickness of any silicon material is significantly reduced due to trapping. The two most promising options so far are:

Thin detectors : drawback: radiation hard electronics for low signals needed **3D** detectors: drawback: technology has to be optimized

- At fluences up to 10¹⁵cm⁻² (Outer layers of a SLHC detector) the change of the depletion voltage and the large area to be covered by detectors is the major problem. CZ detectors could be a cost-effective radiation hard solution
- Miniature microstrip and pixel detectors made with defect engineered Si have been fabricated by RD50 or are in process. First studies after irradiation with LHC-like electronics are encouraging: CCE on microstrip n-in-p oxygenated detector irradiated up to 7x10¹⁵ [24GeVp/cm²] is > 6500e.
- New Materials like SiC,GaN are under investigation. More radiation studies needed.

RD50 web-site: www.cern.ch/rd50