Development of Radiation Hard Sensors for Very High Luminosity Colliders - CERN-RD50 project -

Mara Bruzzi

INFN - University of Florence, Italy

On behalf of CERN RD50 Collaboration

Complete author list at http://www.cern.ch/rd50

LHC: $\mathscr{L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ 10 years operationfluence of fast hadrons : $\phi(R = 4 \text{ cm}) \sim 3 \cdot 10^{15} \text{ cm}^{-2}$

Possible LHC upgrade ("Super-LHC"): $\mathscr{L} = 10^{35} \text{cm}^{-2} \text{s}^{-1}$ 5 years operation

Anticipated Radiation Environment (CERN-TH/2002-078)

Radius (cm)	Fluence of fast hadrons [cm ⁻²]	Dose [kGy]	
4	1.6x10 ¹⁶	4200	
22	8.0x10 ¹⁴	350	
115	1.0×10^{14}	9.3	

Present semiconductor detector technology is not able to operate at such high fluences/doses

RD50 - Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders 280 Members from 55 Institutes

Main Objective

Development of ultra-radiation hard semiconductor detectors, able to withstand fast hadron fluences and doses as expected for luminosity upgrade of the LHC to 10^{35} cm⁻²s⁻¹.

47 European and Asian institutes (34 west, 11 east)

Belgium (Louvain), Czech Republic (Prague (2x)), Finland (Helsinki (2x), Oulu), Germany (Berlin, Dortmund, Erfurt, Halle, Hamburg, Karlsruhe), Greece (Athens), Italy (Bari, Bologna, Florence, Milano, Modena, Padova, Perugia, Pisa, Trento, Trieste, Turin), Lithuania (Vilnius), Norway (Oslo (2x)), Poland (Warsaw), Romania (Bucharest (2x)), Russia (Moscow (2x), St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona, Valencia), Sweden (Lund) Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Exeter, Glasgow, Lancaster, Liverpool, London, Sheffield, University of Surrey)

7 North-American institutes Canada (Montreal), USA (Fermilab, Purdue University, Rutgers University, Syracuse University, BNL, University of New Mexico)

1 Middle East institute Israel (Tel Aviv) **Detailed member list:** http://cern.ch/rd50

RD50 - Scientific objectives and strategies

Three R&D strategies:

- Material engineering
 - Defect engineering of silicon (oxygenation, dimers, ...)
 - New detector materials (SiC, ...)
- Device engineering
 - Improvement of present planar detectors
 - (3D detectors, thin detectors, cost effective detectors,...)
- Variation of detector operational conditions
 - Low temperature operation
 - Forward bias operation

Further key tasks:

- Basic studies
- Defect modeling and device simulation

RD50 Center of gravity

Scientific Organization of RD50

Macroscopic Radiation Damage

1. Change of V_{dep} , N_{eff} and annealing behavior

2. Increase of leakage current and annealing behaviour

Mara Bruzzi on behalf of the RD50 Collaboration – IEEE NSS MIC 2003, October 19-24, 2003

3. Deterioration of the charge collection efficiency

Defect Engineering of Silicon

Impurities incorporation to prevent the formation of divacancy related defects

 \rightarrow Oxygen can getter vacancies reducing the formation of deeper levels as V₂O

 $V < VO \longrightarrow VO$ (not harmful at room temperature) $V < VO \longrightarrow V_2O$ (negative space charge)

Benefit with gamma and 24GeV/c protons in terms of β. No benefit with neutrons.

Different kind of Si materials investigated by RD50

Material	Symbol	ρ Ω cm	[O _i] cm ⁻³
Standard n- or p-type FZ	STNFZ	$1-7 \cdot 10^{3}$	< 5 10 ¹⁶
Diffusion Oxygenated FZ p or n-type	DOFZ	$1-7 \cdot 10^{3}$	$\sim 1-2 10^{17}$
Epi-layer 50 μm on CZ n-type ITME	EPI	50-100	substrate: 1 · 10 ¹⁸
Czochralski Sumitomo, Japan	CZ	$1.2 \cdot 10^{3}$	$\sim 8-9 \ 10^{17}$
Magnetic Czochralski Okmetic Finland	MCZ	$1.2 \cdot 10^{3}$	~ 5-9 10 ¹⁷

- Microscopic study of radiation induced defects
- Changes in the macroscopic parameters of single pad detectors
- Performance of segmented devices

Microscopic study of radiation induced defects

Interpretations for the V₂O energy level structure

- "I defect" Acceptor + Donor E_c 0.545 eV + E_v +0.23 eV induced by irradiation [I.Pintilie et al., APL 82 (13), 2169 (2003)]
- "X-defect" Double-acceptor E_c-0.467

 $E_c-0.467eV + E_c-0.233eV$ irradiation + annealing of V_2 [E.Monakhov et al., PRB 65(2002)233207]

I defect responsible for type inversion in Standard FZ Si after ⁶⁰Co γ–irradiation and for increase of leakage current with dose. It appears in oxygen lean Si.

Presence of a bistable donor which overcompensate radiation induced deep acceptors

Macroscopic Effects: recent results on Czochralski Si

190 MeV π irradiation Villigen Cz from Sumitomo Sitix, Japan 24 GeV/c p irradiation CERN Cz from Sumitomo Sitix, Japan

- No type inversion (SCSI)
- Reverse current and charge trapping comparable to FZ silicon

10-30 MeV proton Jyväskylä, Finland Magnetic Cz-Si Okmetic, Finland Improvement in V_{dep}, N_{eff} Observed SCSI Reduction of reverse current ??

900 MeV electron Elettra (Trieste, Italy) CZ-Si Sumitomo Japan, EPI-ITME

Decrease of CCE observed only beyond 10¹⁵ ecm⁻² for CZ and EPI

New Materials: Silicon Carbide and GaN

Epitaxial SiC Schottky Barriers

- \blacklozenge n epilayer N_{eff} ~5×10^{13} cm^{-3} 40µm by IKZ Berlin on CREE substrate
- Schottky and Ohmic contacts produced by Alenia System
- \blacklozenge Charge collection efficiency tested with αs ^{241}Am and β ^{90}Sr
- Irradiation tests with 24GeV proton in progress

Q~2200e corresponding to CCE 100% at V_{dep}= 60V

Proton-irradiation induced defects in epitaxial 4H-SiC Schottky Barriers

Research activity by the group of Bologna in collaboration with Torino

- n epilayer 7µm
- $N_{\rm eff} \sim 7 \times 10^{15} {\rm cm}^{-3}$
- Schottky Barriers Ti or Ni
- Ohmic contacts Ti/Ni/Ag
- Deep levels by C-DLTS
- ♦ 6.5MeV p up to 6.4x10¹³cm⁻²

Six traps detected

◆ E = 0.18 - 1.22eV

• $s = 10^{-13} - 10^{-18} cm^{-2}$

• $N_t = 10^{11} - 5 \times 10^{14} \text{ cm}^{-3}$

The creation of energy levels with N_t of the same order of magnitude of the doping density does not affect the charge transport in the detector. This probably due to the shallow energies of the traps.

2. SiC Triode Detector structures

Produced and tested at Ioffe Physico-Technical Institute, St. Petersburg, Russia

• Development of radiation-hard triode (transistor) detector structures based on SiC layers. Triode detector to get amplification of a charge generated in the detector bulk and realize the gain of the detector signal compared to that in the diode structure.

 p-type epilayer SiC grown by sublimation epitaxy on n⁺ SiC wafers: 6H-SiC (processed at Ioffe Institute) 10μm 4H-SiC (processed in Linkoping University, Sweden) 30μm

Emitter: n+ SiC waferBase: p+ epi-layerCollector: Schottky barrier

• Irradiation at Ioffe Institute with 8 MeV protons up to 10¹³-10¹⁴cm⁻², corresponding to 10¹⁶cm⁻² 1GeV protons

• Charge collection efficiency investigated with α -particles $E_{\alpha} = 3.5 - 5.45 \text{MeV}$

Material	6H-SiC	4H-SiC
Fluence [cm ⁻²] and particle	2.10 ¹³ 8MeV protons	10 ¹⁴ 8MeV protons
Eq Fluence [cm ⁻²] 1 GeV proton	$1.3 \cdot 10^{15}$	1.10^{16}
thickness of the epilayer [µm]	10	30
$N_{\rm eff}(0) [\rm cm^{-3}]$	$7.5 \cdot 10^{14}$	$(3-5) \cdot 10^{15}$
$N_{eff}(\Phi) [cm^{-3}]$	$1.8-2.6 \cdot 10^{13}$	
V _{dep} (0) [V]	125	8500
$V_{dep}(\Phi)$ [V]	2.5	
Gain at V _{dep}	18	Not achieved
α-particle energy	3.5MeV	5.5 MeV
CCE % after irradiation	~ 100 %	~ 80 %

Results on Triode epitaxial SiC Detector after irradiation with 8 MeV p up to 10¹⁴cm⁻²

Data From E. Verbitskaya et al.

Mara Bruzzi on behalf of the RD50 Collaboration - IEEE NSS MIC 2003, October 19-24, 2003

3. SiC p⁺n junction detectors

Research activity of the Perugia group in collaboration with Florence, IMM-CNR Bologna and INSA-CEGELY, Lyon France

Semi-Insulating SiC detectors

Research activity of Glasgow, Surrey, Vilnius. Bulk SiC has incomplete charge collection (no e transport) and suffers for polarisation effects (traps e.g. Vanadium and micropipes)

Simulated CCE of bulk and epi devices up to fluences of 10¹⁶ cm⁻² in talk N33-3 by Tina Quinn et al.

Data from M. Rahman et al.

Semi-Insulating GaN detectors

Research activity of Vilnius, Glasgow, Surrey

- SI-GaN epitaxial layer on n-type GaN substrate (University of Tokushima Japan)
- Au Schottky contacts 1.5 mm diameter
- Charge Collection tested with α-particles ²⁴¹Am by Glasgow, Surrey groups
- Irradiated by X rays 600MRad
- Irradiated by neutrons in Ljubljana up to 5x10¹⁴cm⁻²

SI-GaN	Energy	Fluence	CCE %
Non-Irradiated			92
Irradiated by X-rays	10keV	600MRad	100
Irradiated by neutrons	100keV	$5 \times 10^{14} \text{cm}^{-2}$	77

Future work: study thicker SI-GaN epilayers

GaN IBIC images GaN IBIC images show charge transport only under contact pad Excellent uniformity of signal with no field enhancement at edges Contact is mainly obscured by silver dag bond wire

See P. Sellin and J. Vaitkus talks at 2nd RD50 workshop

www.cern.ch/rd50

Device Engineering: 3D and Semi3D detectors

- Semi 3-d devices, proposed by Z. Li, BNL, made in collaboration with US groups
- 3-d devices, proposed by S. Parker.
- Holes processing: dry etching, Laser drilling, Photo electrochemical. Present aspect ratio (within RD50) 13:1, target > 30:1

Some result (α spectroscopy) before and after 10¹⁴ 300 MeV/c π cm⁻²

Data from P. Roy, 2nd RD50 workshop

Very promising silicon devices for speed and radiation hardness.

Mara Bruzzi on behalf of the RD50 Collaboration – IEEE NSS MIC 2003, October 19-24, 2003

Device engineering: Thin SiC detectors by micromachining

The active thickness of the device after heavy irradiation is limited by the effective drift lengths e: ~150μm, h:~50μm after 1MeV neutron irradiation at 10¹⁵cm⁻² (Kramberger et al.).

Thin Si detectors 50-100 μ m: low V_{dep}, limited leakage current Two technical Approaches:

- Thinning by micromachining: research activity of the IRST-Trento group in collaboration with the other italian groups.

IRST-Trento: SEM of a silicon wafer thinned by TMAH

Leakage Current [nA/cm ³]	V _{dep} [V]
80	12
30	~1
55	<1
	Leakage Current [nA/cm ³] 80 30 55

Ready to be irradiated.

- Epitaxial Si detectors: wafers by ITME, processed by CiS, now irradiated up to 9.2410¹⁵ 24GeV p/cm² at CERN, measurements (Hamburg group) in progress.

Cross section of a thinned silicon detector by IRST-Trento

Talks of RD50 group members at IEEE 2003 NSS and RTSD

N4-5 Super radiation hard technologies: 3D and widegap detectors M.Rahman et al. N20-6 Measurement of the Trapping Time constants in proto-irradiated, Si O. Krasel et al. N20-4 Radiation damage in bipolar transistors caused by thermal neutrons, I. Mandic et al. N26-17 Lithium Ion Irradiation effects on diodes manufactured on epitaxial Si, A.Candelori et al. N26-20 Radiation damage tests of all-p type termination structures C. Piemonte et al. N26-21 An enhanced device simulation of heavily irradiated silicon ... F. Moscatelli et al. N26-22 TSc analysis of gamma irradiated standard and oxygenated diodes ... D. Menichelli et al. N33-2 Radiation Hardness of high resistivity CZ Si detectors after gamma.... Z. li et al. N33-3 Comparison of Bulk and Epitaxial 4H-SiC detectors T. Quinn et al. N36-117 Single Neutron pixel detectors based on medipix-1 Device, I.Iakubek et al. R15-2 On the physical processes induced by particle irradiation ... by A.Cavallini et. R18-4 Perfomance of Silicon Carbide Radiation Detectors, F. Nava et al.

Summary

RD50: Development of Ultra Radiation Hard semiconductor detectors for Super LHC. Promising results have been obtained:

• Radiation hardening by defect engineering: reduction of N_{eff} at high fluences of fast hadrons and gamma doses using oxygen enriched Si (DOFZ, Cz, MCz, epitaxial)

• SiC and GaN \rightarrow good charge collection properties but thicker layers required to be competitive with Si

♦ 3-D detectors: promise of radiation hardness ($\sim 10^{14}$ p/cm²), improvement of aspect ratio, electrodes in progress

device engineering by thinning, edge-less detectors, semi-3d: projects running

◆ Irradiations at very high doses (10¹⁶cm⁻²) of single pad and segmented devices in progress