Ultra-rad-hard Sensors for Particle Physics Applications

Z. Li

Brookhaven National Laboratory On behalf of CERN RD50 Collaboration

Pixel 2002, September 9-12, 2002, Carmel, CA

RD50 – 271 members

J.Adey¹, A.Al-Ajili², P.Alexandrov³, G.Alfieri⁴, P.P.Allport⁵, A.Andreazza⁶, M.Artuso⁷, S.Assouak⁸, B.S.Avset⁹, A.Baldi¹⁰, L.Barabash¹¹, E.Baranova³, A.Barcz¹², A.Basile¹³, R.Bates², B.Bekenov¹⁴, N.Belova³, G.M.Bilei¹⁵, D.Bisello¹⁶, A.Blumenau¹, V.Boisvert¹⁷, G.Bolla¹⁸, V.Bondarenko¹⁹, E.Borchi¹⁰, L.Borrello²⁰, D.Bortoletto¹⁸, M.Boscardin²¹, L.Bosisio²², G.Bredholt⁹, L.Breivik⁹, T.J.Brodbeck²³, J.Broz²⁴, A.Brukhanov³, M.Bruzzi¹⁰, A.Brzozowski¹², M.Bucciolini¹⁰, P.Buhmann²⁵, C.Buttar²⁶, F.Campabadal²⁷, D.Campbell²³, C.Canali¹³, A.Candelori¹⁶, G.Casse⁵, A.Chilingarov²³, D.Chren²⁴, V.Cindro²⁸, M.Citterio⁶, R.Coluccia²⁹, D.Contarato²⁵, J.Coutinho¹, D.Creanza³⁰, L.Cunningham², V.Cvetkov³, C.Da Via³¹, G.-F.Dalla Betta²¹, G.Davies³², I.Dawson²⁶, W.de Boer³³, M.De Palma³⁰, P.Dervan²⁶, A.Dierlamm³³, S.Dittongo²², L.Dobrzanski¹², Z.Dolezal²⁴, A.Dolgolenko¹¹, J.Due-Hansen⁹, T.Eberlein¹, V.Eremin³⁴, C.Fall¹, C.Fleta²⁷, E.Forton⁸, S.Franchenko³, E.Fretwurst²⁵, F.Gamaz³⁵, C.Garcia³⁶, J.E.Garcia-Navarro³⁶, E.Gaubas³⁷, M.-H.Genest³⁵, K.A.Gill¹⁷, K.Giolo¹⁸, M.Glaser¹⁷, C.Goessling³⁸, V.Golovine¹⁴, J.Goss¹, A.Gouldwell², G.Grégoire⁸, P.Gregori²¹, E.Grigoriev¹⁴, C.Grigson²⁶, A.Groza¹¹, J.Guskov³⁹, L.Haddad², R.Harding³², J.Härkönen⁴⁰, J.Hasi³¹, F.Hauler³³, S.Hayama³², F.Hönniger²⁵, T.Horazdovsky²⁴, R.Horisberger⁴¹, M.Horn², A.Houdayer³⁵, B.Hourahine¹, A.Hruban¹², G.Hughes²³, I.Ilyashenko³⁴, A.Ivanov³⁴, K.Jarasiunas³⁷, R.Jasinskaite³⁷, T.Jin³², B.K.Jones²³, R.Jones¹, C.Joram¹⁷, L.Jungermann³³, S.Kallijärvi⁴², P.Kaminski¹², A.Karpenko¹¹, A.Karpenko³¹, A.Karpov¹⁴, V.Kazlauskiene³⁷, V.Kazukauskas³⁷, M.Key²⁷, V.Khivrich¹¹, J.Kierstead⁴³, J.Klaiber-Lodewigs³⁸, M.Kleverman⁴⁴, R.Klingenberg³⁸, P.Kodys²⁴, Z.Kohout²⁴, A.Kok³¹, A.Kontogeorgakos⁴⁵, G.Kordas⁴⁵, A.Kowalik¹², R.Kozlowski¹², M.Kozodaev¹⁴, O.Krasel³⁸, R.Krause-Rehberg¹⁹, M.Kuhnke³¹, A.Kuznetsov⁴, S.Kwan²⁹, S.Lagomarsino¹⁰, T.Lari⁶, K.Lassila-Perini⁴⁰, V.Lastovetsky¹¹, S.Latushkin³, R.Lauhakangas⁴⁶, I.Lazanu⁴⁷, S.Lazanu⁴⁷, C.Lebel³⁵, C.Leroy³⁵, Z.Li⁴³, L.Lindstrom⁴⁴, G.Lindström²⁵, V.Linhart²⁴, A.P.Litovchenko¹¹, P.Litovchenko¹¹, A.Litovchenko¹⁶, V.Litvinov³, M.Lozano²⁷, Z.Luczynski¹², A.Mainwood³², I.Mandic²⁸, S.Marti i Garcia³⁶, C.Martínez²⁷, S.Marunko³⁹, K.Mathieson², A.Mazzanti¹³, J.Melone², D.Menichelli¹⁰, C.Meroni⁶, A.Messineo²⁰, S.Miglio¹⁰, M.Mikuz²⁸, J.Miyamoto¹⁸, M.Moll¹⁷, E.Monakhov⁴, L.Murin⁴⁴, F.Nava¹³, H.Nikkilä⁴², E.Nossarzewska-Orlowska¹², S.Nummela⁴⁰, J.Nysten⁴⁰, R.Orava⁴⁶, V.OShea², K.Osterberg⁴⁶, S.Parker⁴⁸, C.Parkes², D.Passeri¹⁵, U.Pein²⁵, G.Pellegrini², L.Perera⁴⁹, B.Piatkowski¹², C.Piemonte²¹, G.U.Pignatel¹⁵, N.Pinho¹, S.Pini¹⁰, I.Pintilie²⁵, L.Plamu⁴², L.Polivtsev¹¹, P.Polozov¹⁴, J.Popule⁵⁰, S.Pospisil²⁴, G.Pucker²¹, V.Radicci³⁰, J.M.Rafí²⁷, F.Ragusa⁶, M.Rahman², R.Rando¹⁶, K.Remes⁴², R.Roeder⁵¹, T.Rohe⁴¹, S.Ronchin²¹, C.Rott¹⁸, A.Roy¹⁸, P.Roy², A.Ruzin³⁹, A.Ryazanov³, S.Sakalauskas³⁷, J.Sanna⁴⁶, L.Schiavulli³⁰, S.Schnetzer⁴⁹, T.Schulman⁴⁶, S.Sciortino¹⁰, G.Sellberg²⁹, P.Sellin⁵², D.Sentenac²⁰, I.Shipsey¹⁸, P.Sicho⁵⁰, T.Sloan²³, M.Solar²⁴, S.Son¹⁸, B.Sopko²⁴, J.Stahl²⁵, A.Starodumov²⁰, D.Stolze⁵¹, R.Stone⁴⁹, J.Storasta³⁷, N.Strokan³⁴, W.Strupinski¹², M.Sudzius³⁷, B.Surma¹², A.Suvorov¹⁴, B.G.Svensson⁴, M.Tomasek⁵⁰, C.Trapalis⁴⁵, C.Troncon⁶, A.Tsvetkov²⁴, E.Tuominen⁴⁰, E.Tuovinen⁴⁰, T.Tuuva⁴², M.Tylchin³⁹, H.Uebersee⁵¹, J.Uher²⁴, M.Ullán²⁷, J.V.Vaitkus³⁷, P.Vanni¹³, E.Verbitskaya³⁴, G.Verzellesi¹³, V.Vrba⁵⁰, S.Watts³¹, A.Werner⁹, I.Wilhelm²⁴, S.Worm⁴⁹, V.Wright², R.Wunstorf³⁸, P.Zabierowski¹², A.Zaluzhnyi¹⁴, M.Zavrtanik²⁸, M.Zen²¹, V.Zhukov³³, N.Zorzi²¹

RD50 – 52 institutes

¹ University of Exeter, Department of Physics, Exeter, EX4 4QL, United Kingdom; ² Dept. of Physics & Astronomy, Glasgow University, Glasgow, UK; ³ Russian Research Center "Kurchatov Institute", Moscow, Russia; ⁴ University of Oslo, Physics Department/Physical Electronics, Oslo, Norway; ⁵ Department of Physics, University of Liverpool, United Kingdom; ⁶ INFN and University of Milano, Department of Physics, Milano, Italy; ⁷ Experimental Particle Physics Group, Syracuse University, Syracuse, USA; ⁸ Université catholique de Louvain, Institut de Physique Nucléaire, Louvain-la-Neuve, Belgium; ⁹ SINTEF Electronics and Cybernetics Microsystems P.O.Box 124 Blindern N-0314 Oslo, Norway; ¹⁰ INFN Florence – Department of Energetics, University of Florence, Italy; ¹¹ Institute for Nuclear Research of the Academy of Sciences of Ukraine, Radiation PhysicDepartments; ¹² Institute of Electronic Materials Technology, Warszawa, Poland; ¹³ Dipartimento di Fisica-Università di Modena e Reggio Emilia, Italy; ¹⁴ State Scientific Center of Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia; ¹⁵ I.N.F.N. and Università di Perugia – Italy; ⁶ Dipartimento di Fisica and INFN, Sezione di Padova, Italy; ¹⁷ CERN, Geneva, Switzerland; ¹⁸ Purdue University, USA; ¹⁹ University of Halle; Dept. of Physics, Halle, Germany; ²⁰ Universita` di Pisa and INFN sez. di Pisa, Italy; ²¹ ITC-IRST, Microsystems Division, Povo, Trento, Italy; ²² I.N.F.N.-Sezione di Trieste, Italy; ²³ Department of Physics, Lancaster University, Lancaster, United Kingdom; ²⁴ Czech Technical University in Prague&Charles University Prague, Czech Republic; ²⁵ Institute for Experimental Physics, University of Hamburg, Germany; ²⁶ Experimental Particle Physics Group, Dept of Physics, University of Sheffield, Sheffield, U.K.; 27 Centro Nacional de Microelectrónica (IMB-CNM, CSIC); 28 Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia; ²⁹ Fermilab, USA; ³⁰ Dipartimento Interateneo di Fisica & INFN - Bari, Italy; ³¹ Brunel University, Electronic and Computer Engineering Department, Uxbridge, United Kingdom; ³² Physics Department, Kings College London, United Kingdom; ³³ University of Karlsruhe, Institut fuer Experimentelle Kernphysik, Karlsruhe, Germany; ³⁴ Ioffe Phisico-Technical Institute of Russian Academy of Sciences, St. Petersburg, Russia; ; ³⁵ Groupe de la Physique des Particules, Université de Montreal, Canada; ³⁶ IFIC Valencia, Apartado 22085, 46071 Valencia, Spain; ³⁷ Institute of Materials Science and Applied Research, Vilnius University, Vilnius, Lithuania; ³⁸ Universitaet Dortmund, Lehrstuhl Experimentelle Physik IV, Dortmund, Germany; ³⁹ Tel Aviv University, Israel; ⁴⁰ Helsinki Institute of Physics, Helsinki, Finland; ⁴¹ Paul Scherrer Institut, Laboratory for Particle Physics, Villigen, Switzerland; ⁴² University of Oulu, Microelectronics Instrumentation Laboratory, Finland; ⁴³ Brookhaven National Laboratory, Upton, NY, USA; ⁴⁴ Department of Solid State Physics, University of Lund, Sweden; ⁴⁵ NCSR DEMOKRITOS, Institute of Materials Science, Aghia Paraskevi Attikis, Greece; ⁴⁶ High Energy Division of the Department of Physical Science, University of Helsinki, Helsinki, Finland; ⁴⁷ National Institute for Materials Physics, Bucharest - Magurele, Romania; ⁴⁸ University of Hawaii; ⁴⁹ Rutgers University, Piscataway, New Jersey, USA; ⁵⁰ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic; ⁵¹ CiS Institut für Mikrosensorik gGmbH, Erfurt, Germany; ⁵² Department of Physics, University of Surrey, Guildford, United Kingdom

OUTLINE

- Introduction
- Radiation induced defects levels in Si
- Radiation induced degradation of electrical properties in Si detectors
 - Leakage current
 - **Changes in electrical neutral bulk**
 - **Space charge transformations and CCE loss**
- RD 50's approaches to obtain ultra radiation hardness
 - Material /impurity / defect engineering (MIDE) Device structure engineering (DSE) New materials
- Future tasks to be carried out by RD 50
- Summary

Introduction

LHC L = 10^{34} cm⁻²s⁻¹ ϕ (R=4cm) ~ $3 \cdot 10^{15}$ cm⁻² 10 years ϕ (R=75cm) ~ $3 \cdot 10^{13}$ cm⁻²

Technology available, however serious radiation damage will result.

Possible up-grade L = 10^{35} cm⁻²s⁻¹ ϕ (R=4cm) ~ $1.6 \cdot 10^{16}$ cm⁻²

A focused and coordinated R&D effort is mandatory to develop reliable and cost-effective radiation hard HEP detector technologies for such radiation levels ---- The approval and formation of CERN RD50 Collaboration (6/02)

Dedicated radiation hardness studies also beneficial before a luminosity upgrade
 Radiation hard technologies now adopted have not been completely characterized:
 Oxygen-enriched Si in ATLAS pixels

A deep understanding of radiation damage will be fruitful also for the **linear** collider where high doses of e, γ will play a significant role.

CERN RD50

Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders

Scientific Organization of RD50

CERN contact: Michael Moll

Radiation induced degradation of electrical properties in Si detectors

Leakage current temp. dependence

 $J / J_0 \mu e^{-E_a/kT}$ E_a = 0.65 eV for 1 MeV neutron radiation

Modest cooling can help a lot!

Parameterization of Leakage current

M. Moll, Ph.D. Thesis, University of Hamburg, 1999

Bulk Damage (electrical neutral bulk, ENB)

Si bulk resistivity increases with fluence and saturates near the intrinsic value of about 300 k Wcm

B. Dezillie et al., IEEE Trans. Nucl. Vol. 46, No. 3, (1999) 221

S. Pirollo et al., NIM A426 (1999) 126-130

Space charge transformations and CCE loss Space charge transformation (SCT) takes one of the following three forms:

- 1. Space charge becomes more negative with radiation due to the creation negative deep acceptors (As-irradiated effect)
 - Space charge sign inversion (SCSI) or "type inversion"
 - Increase in full depletion voltage (V_{fd}) due to increase of net space charge density V_{fd} = $\frac{ed^2 |N_{eff}|}{2ee_0}$ \rightarrow CCE loss at a given bias
- 2. Increase of space charge density during annealing at RT and elevated temperatures ("Reverse annealing")
 - More increase of V_{fd}
- **3.** Space charge modifications due to trapping by free carriers

G.Lindstroem, presented on "1st Workshop on Radiation hard semiconductor devices for very high luminosity colliders", CERN 28-30 November, 2001

• Possibly multiple annealing stages (two or more defects involved)

$$N_{eff}(t) = -N_0 - N_{eff}^{r, \max} (1 - e^{-t/t})$$
Elevated Temp. Anneal(80 C)
#348 and #439, 4-5 k, 0.1 cm2
8.2E12
A 8.2E13
A 8.2E14
A 8.2E15
A 8.2E14
A 8.2E15
A

(Thousands) Anneal Time (sec) 80 Neutron 96.8 yr 14.6 yr 179 d 3.7 hr t

Z. Li , IEEE Trans. Nucl. Sci., Vol. 42, No. 4, (1995) 224

Parameterization of N_{eff} (As-irradiated and reverse annealing)

Model for the reverse annealing

- Reverse annealing in n, p, alpha irradiated Si detectors (Clusters)
- No reverse annealing in gamma irradiated Si (Single defects only, no clusters)
- Reverse annealing may be due to the breaking off of clusters over time and temp, releasing single defects:

SUPERCLUSTER CONFIGURATION

Z. Li et al., IEEE Trans. Nucl. Sci., Vol. 44, No. 3, (1997) 834

Double-Junction/Double-Peak (DJ/DP) Effect

DJ/DP effect and the 2-deep level model (Z. Li and H.W.

Kraner, J. Electronic Materials, Vol. 21, No. 7, (1992) 701)

Detail Modeling of (DJ/DP) Effect

2-deep level model (V. Eremin et al, Nucl. Instrum. & Meth. A476 (2002) 556-564.)

DL #	Ci-Oi		Deep donor		V-V		Deep acceptor	
D/A, 0/1	0		0		1		1	
l	electrons	holes	electrons	holes	electrons	holes	electrons	holes
Et=EdI-Ev	0.36	#REF!	0.52	#REF!	0.7	-0.7	0.6	-0.6
sig/e[cm2]	1.00E-15		1.00E-15		1.00E-15		1.00E-15	
sig/h[cm2]		1.00E-15		1.00E-15		1.00E-15		1.00E-15
Ndl[cm-3]	0.00E+00		4.60E+14		0.00E+00		4.00E+15	

Degradation in Charge Collection Efficiency (CCE)

Radiation Hardness

Material/ impurity/defect Engineering (MIDE)

o Impurities intentionally incorporated into Si may serve to getter radiation-induced vacancies to prevent them from forming the damaging V-V and related centers o Impurities: O, Sn, N, Cl, H, etc.

One example: oxygen O:

$$V + V \rightarrow V_2$$
$$V + O \rightarrow O - V$$
$$V + VO \rightarrow V_2O$$

Competing processes for V

If [O] >>[V] and [V-O], then the formation rates of V₂ and V₂O will be greatly suppressed:

Key: impurity concentration should be much larger than that of vacancies

Material/ impurity/defect Engineering (MIDE)

Defect kinetics model

Reactions

PKA cluster reactions						
I + V ® Si	$\mathbf{V} + \mathbf{V} \otimes \mathbf{V}_2$					

I reaction	V reaction	C _i reaction
$I + C_s \otimes C_i$	V + O ® VO	C _i + Cs ® CC
$I + V_2 \otimes V$	V + P ® VP	C _i + O ® CO
I + VP ® P	$V + VO \otimes V_2O$	CO + I ® COI *
$I + V_3 O \otimes V_2 O$	$V + V_2 O \otimes V_3 O$	CC + I ® CCI *

Defect structure modeling

10 MeV protons

24 GeV/c protons

1 MeV neutrons

More clusters for n-rad

Defect kinetics modeling

Material/ impurity/defect Engineering (MIDE)

Review of Current Technologies

 $\begin{array}{l} \underline{HTLT}: \mbox{High Temperature Long Time oxidation} \\ Oxidation in straight O_2 at high T (up to 1200 ~C) for up to 24 hrs \\ [O_i] up to 4.10^{17} \mbox{cm}^3, uniform up to 50 \mbox{ mms.} \\ \mbox{developed at BNL in 1992} \end{array}$

 $\begin{array}{l} \underline{DOFZ}: \mbox{Diffusion Oxygenated Float Zone Si} \\ Oxidation+long time diffusion in N_2 at high T (up to 1150 \ ^{\circ}C) \\ [O_i] up to 5 \ \cdot 10^{17} cm^{\ \cdot 3} \\ developed in the framework of RD48 in 1998 \end{array}$

o Thermal donor (TD) suppression (no change in initial doping)

o TD introduction (initial doping dominated by TD)

B. Dezillie et al., IEEE Trans. Nucl. Sci., Vol., No., (2000) 1892-1897

HTLT technology totally improve gamma radiation hardness

Maximum improvement with regard to gamma radiation by HTLT

Model for the role of oxygen in rad-hardness

Z. Li et al., Nucl. Inst. & Meth., A461 (2001) 126-132

Material/ impurity/defect Engineering (MIDE)

Low resistivity starting Si materials

- o Delayed SCSI
- o Lower V_{fd} at higher fluences

Nucl. Inst. Meth. A360 (1995) 445

Oxygen Dimers in Silicon

Oxygen dimer O_{2i} formed during preirradiation by Co⁶⁰ **g**-irradiation at 350°C

 $V + O \rightarrow VO;$ $V + VO \rightarrow V_2O$ S. Watts et al., presented at Vertex 2001 $V + O_2 \rightarrow VO_2;$ $V + VO_2 \rightarrow V_2O_2$ neutral ?

Thinner Detectors

More radiation tolerance:

For d = 50 mm, the detector can be still fully depleted up to a fluence of 2-3x10¹⁵ n/cm² at bias of 200 V:

- For a low starting resistivity Si (50 W-cm), no SCSI up to 1.5x10¹⁵ n/cm²
- For high starting resistivity Si (³ 4 kW-cm), still fully depleted up to 3x10¹⁵ n/cm², even though SCSI taking place at about 1x10¹³ n/cm².

Device Structure Engineering (DSE)

- Multi-guard-ring system (MGS)
 - **o** To increase the detector breakdown voltage
 - o High operation voltage to achieve more radiation tolerance
 - o Up to 1000 volts can can be achieved (up to 6x10¹⁴ n/cm² tolerance)
 - o Both CMS and ATLAS pixel detector systems use MGS
 - n on n and n on p detectors
 - **O** Not sensitive to SCSI
 - o Both CMS and ATLAS pixel detector systems use n on n

Multi-guard-ring system (MGS)

3-d Detector

- O Differ from conventional planar technology, p⁺ and n⁺ electrodes are diffused in small holes along the detector thickness ("3-d" processing)
- o Depletion develops laterally (can be 50 to 100 mm): not sensitive to thickness
- o Much less voltage used --- much higher radiation tolerance

BIAS VOLTAGE (V)

Other Novel Structures

Other Novel Structures

p⁺- *n*⁺ /*n*/*n*⁺ configuration (Medium to high

resistivity)

- Low bias at the beginning
- p⁺- n⁺/n/n⁺ configuration:
 - **Depletion from one side before SCSI** 0
 - **Depletion from both sides after SCSI** 0
- May work up to 1x10¹⁵ n/cm² rad. ٠
- **One sided processing**

Microns

New Materials

oOther semiconductor materials may have to be used for extremely high radiation (> $1x10^{16}$ n/cm²)

Diamond, SiC, etc.

	Lattice const.	Density (g/cm ³)	Eg (eV)	Dielec Const.	Disp. thresh old E (eV)	e-h creat E (eV)	μ _e (cm/s/V)	$\begin{array}{c} \mu_h \\ (cm/s/V) \end{array}$	Rad. Leng th (cm)	e- h/0.3% X ₀ [e]
С	3.567	3.5	5.5	5.7	80	13-	1800	1200	12	7.2k
						17				
SiC	3.086						400-			
	15.117	3.2	3.3	9.7	30?	9	900	20-50	8.1	13k
GaP	5.4512	4.1	2.8	11	10	8	110	75	3.5	5.2k
CdS	5.8320	4.8	2.5	9.1	8	7.6	340	50	2.1	7.21
CdTe	6.482	5.9	1.49	10	6.7	5	1050	100	1.5	
GaAs	5.653	5.3	1.43	13.1	9	4.8	8500	400	2.3	
InP	5.869	4.8	1.34	13	7.5	4.2	4600	150	2.1	
Si	5.431	2.3	1.12	11.9	13.5	3.6	1450	450	9.4	24k
Ge	5.646	5.3	0.66	16	15	3	3900	1900	2.3	

Properties of Si as compared to other Semiconductors

SiC is a most promising material for radiation detection. The 3.3eV gap provides very low leakage currents at room temperature and a mip signal of 5100e per 100 μ m. Epitaxial SiC Schottky barriers have been successfully tested as alpha detectors and showed a 100% CCE after 24GeV/c proton irradiation up to 10¹⁴ cm⁻².

Future RD50 Tasks

o More studies in the fields of:

- MIDE --- O and other impurities: H, Cl, N, oxygen-dimer, etc.
- DSE --- Realize 3D and semi-3D detectors, and thin detectors (push rad-hardness/tolerance to a few times of 1x10¹⁵ n/cm²)
- o Make detectors with combined technologies:
- Oxygenated detectors with MGS and/or 3D and novel detector structures
- •Oxygenated low resistivity detectors with MGS and/or 3D and novel detector structures
- And so on

(push rad-hardness/tolerance close to 10¹⁶ n/cm²)

o Other semiconductor materials for extremely high radiation

• SiC, etc.

(push rad-hardness/tolerance over 1x10¹⁶ n/cm²)

Summary

o Different particles cause different displacement damage in Si material and detectors

o Radiation-induced damages cause detector electrical properties to degrade:

- increase of detector leakage current
- compensation of Si bulk (intrinsic bulk resistivity)
- Increase of negative space charge during radiation and annealing
- space charge maybe modified by charge trapping

o To obtain ultra high Radiation hardness/tolerance, newly-formed CERN RD50 Collaboration is poised to carry out various tasks

- Material/impurity/defect engineering
- Device structure engineering
- Detector operation and modeling
- Full detector integration
- Other semiconductor materials for extreme radiation (> 10¹⁶ n/cm²)

1st RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity colliders, CERN 2-4 October, 2002 http://rd50.web.cern.ch/rd50/1st-workshop/default.htm