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Generation current temperature scaling 

Technical Note by A.Chilingarov, Lancaster University 

 

The current per unit area generated inside the depleted bulk can be written as 

g

iqWn
J


     (1) 

where q is elementary charge, W – depleted thickness, ni – intrinsic carrier 

concentration and g – generation lifetime. Temperature dependence of ni can be 

expressed as 

ni(T)  T 3/2 exp(-Eg /2kT)   (2) 

where T is the absolute temperature, k - the Boltzman constant and Eg - the band gap. 

Weak temperature dependence of the electron and hole effective masses is neglected 

in Eq.(2). 

 

Assuming generation happening via a specific trap with density Nt and level Et in the 

band gap the generation lifetime can be written as [1] 
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Here t = Et – Ei is the difference between the trap level and the intrinsic Fermi level, 

vtn(p) is the thermal velocity and n(p) the trapping cross-section for electrons (holes). 

The dependence of g on t is close to cosh(t/kT) (assuming vtp p ≈ vtn n). The 

minimum g is reached and thus the most effective current generation happens when 

the trap level is close to Ei. In this case the temperature dependence of g is the 

simplest: g  T -1/2, and due only to that of the thermal velocities. (The temperature 

dependence of the effective carrier masses is again neglected.) For │t│> 1.5 the 

additional factor in g temperature dependence is reduced to exp(│t│/kT). Therefore 

the temperature dependence of the generation current is usually parameterised as 
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where  is a parameter close to the absolute value of t. An excess of the energy in 

the exponent over the Eg indicates the generation proceeding via a trap level 

noticeably different from Ei.  

 

The temperature dependence of the current is clearly dominated by that of ni. Thus it 

is crucial to know ni(T) in detail. The intrinsic carrier concentration is a parameter of 

prime importance in semiconductor physics and a vast literature exists about it. This 

Note relies on a relatively recent Review [2] and concentrates on the temperature 

interval of ±30oC most relevant to the present usage of silicon detectors in Particle 

Physics. 

 

Ref. [2] quotes three fits of ni(T) found in different experimental studies. They are 

described by Eqs. (21, 22, 23) of that paper and have the form of  

ni(T)  T m exp(-Ea /kT)   (5) 

where Ea is so called activation energy. In Eqs. (21, 22) m is set to the standard value 

of 3/2 and the results can be directly compared with parameterisation (2). In eq. (23) 

m is a free parameter of the fit and has the value of 2.365. At any temperature, T, the 

dependence (5) can be converted to the equivalent one with m=3/2 and activation 

energy Ea
eq. Denote Ea

m the activation energy for the parameterisation (5) with 

specific m and require that the relative derivative of it is equal to that with m =3/2. As 

a result one gets 

   (dni/ni)/(dT/T) = 3/2 + Ea
eq

 /kT = m + Ea
m

 /kT   

from which it follows 

    Ea
eq = Ea

m + (m-3/2) kT   (6) 

In Eq. (23) of Ref.[2] the activation energy is k*6733K = 0.580 eV and m=2.365. 

Using the relation (6) one obtains for T=273K the equivalent activation energy of 

0.601 eV. It is easy to check that in the interval from -30o to +30oC the temperature 

dependences (5) for m = 2.365, Ea = 0.580 eV and for m=3/2, Ea = 0.601 eV differ by 

less than 1%. 

 

The activation energy values in Eqs. (21, 22) of Ref.[2] are 0.605 and 0.603 eV 

respectively. Combining them with the value of 0.601 eV obtained above one gets the 

average experimental value of Ea = 0.603 ± 0.002 eV where the uncertainty covers all 
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three experimental values. Therefore the experimental value for the effective gap 

energy is 

Eef = 2Ea = 1.206 ± 0.004 eV.   (7) 

This result looks incompatible with the experimental values of Eg, which according to 

Table 1 of Ref.[2] are 1.1242 eV at 300K and 1.1367 eV at 250K. Note however that 

temperature independent Eef should also incorporate temperature dependence of the 

band gap Eg. 

 

Consider the exponential term of Eq.(2) 

f(T)  exp(-Eg /2kT)    (8) 

with Eg itself a function of temperature. The relative gradient of this function is  

(df/f)/(dT/T) = Eg(T)/2kT - (dEg/dT) /2k  (9) 

If the temperature dependent Eg is replaced in Eq.(8) by a constant parameter Eef then 

the relative gradient will be 

(df/f)/(dT/T) = Eef /2kT   (10) 

Requiring the gradients given by Eqs. (9) and (10) to be equal at a given temperature, 

T, one gets for Eef: 

    Eef = Eg(T) – T (dEg/dT)   (11) 

Consider now the situation when in some temperature interval the band gap 

dependence can be approximated by a linear function 

     Eg(T) = E0 –  T .   (12) 

Here E0 is the band gap value extrapolated to T = 0K. In this case the effective energy 

gap found from Eq. (11) is 

    Eef = E0 –  T – T (-) = E0   (13) 

independent of T (and also of ). This conclusion can be verified by direct 

substitution of Eg in Eq.(8) by relation (12): 

A·exp(-Eg(T)/2kT) = A·exp(-E0/2kT+/2k) = A'·exp(-E0/2kT) (14) 

 

For temperatures above 250K and below 415K the parameterisation (12) is readily 

available in Ref. [2], Eq.(17). The value of E0 in this equation is 1.206 eV in perfect 

agreement with the experimentally found Eef presented in eq. (7). Thus there is no 

contradiction between the temperature dependent band gap energy and the 

temperature independent effective energy. To some extent surprisingly the effective 
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gap value happens to be outside the range of the actual band gap values in the 

considered temperature interval. 

 

For non-irradiated sensors it is usually assumed that the current is generated via traps 

with energy levels near the mid gap i.e. the I(T) is described by Eq.(4) with =0 and 

either temperature dependent Eg(T) or the effective gap E0. However in non-irradiated 

sensors the bulk generation current is typically quite small and presents no practical 

problems. The high current in such sensors is usually due to other reasons e.g. soft 

breakdown, which makes the above analysis irrelevant. It is more appropriate for 

irradiated sensors where the bulk current often dominates. The information on I(T) for 

irradiated sensors is rather scarce. The survey [3] made in 1994 produced the effective 

gap value of 1.24 ± 0.06 eV, which agrees with the mentioned above E0 = 1.21 eV for 

ni, but has a substantial uncertainty. The study of ATLAS SCT sensors irradiated by 

~3 1014 24 GeV protons/cm2 performed in 1997-99 resulted in the effective gap value 

of 1.21 eV [4]. Thus until proven otherwise the same temperature dependence with Eef 

equal to 1.21 eV may be used for both irradiated and non-irradiated sensors.  

 

In conclusion, the temperature dependence of the bulk generation current can be 

described as  

I(T)  T 2 exp(-1.21eV/2kT) 

both for non-irradiated and irradiated sensors. The difference between the effective 

energy value and the actual gap energy is due to using temperature independent Eef 

instead of the temperature dependent Eg(T). 

 

The author is grateful to Graham Beck, QMUL, UK for helpful discussions. 
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