Bulk SiC as a detector material

GLASGOW

W. Cunningham^a, J. Melone^a, M. Horn^a, V.Kazukauskas^{b,c} J. Grant^a, F. Doherty^a, M. Glaser^d, J.Vaitkus^{b,c}, M. Rahman^a

 ^a Dept. of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland
^bInstitute of Materials Science and Applied Research, Vilnius University, Sauletekio al.9-III, 2040 Vilnius, Lithuania
^cFaculty of Physics, Vilnius University, Sauletekio al.9-III, 2040 Vilnius, Lithuania

^dEP Division, CERN, CH-1211 Geneva 23, Switzerland

Material systems investigated^{NIVERSITY} GLASGOW

- Cree vanadium (V) doped 4-H SiC
 - V concentration ~10¹⁸ cm⁻³
- Okmetic semi-insulating 4-H SiC undoped – semi-insulating material due to growth process
- Epi-layers of lightly doped 4-H SiC from IKZ

UNIVERSITY of GLASGOW

Design of test samples

Close up showing pads and guard rings

UNIVERSITY of GLASGOW

I-V Cree material

Front contact :100 nm Ti back contact : 100 nm Ni

UNIVERSITY of GLASGOW

Spectra from test diodes

Spectra taken for 5.48 MeV Am²⁴¹ α's in vacuum

CCE vs Voltage unirradiated

UNIVERSITY of GLASGOW

The evolution of the CCE with increasing detector bias

Limitations of V doped material

UNIVERSITY of GLASGOW

Simulations of CCE with only V dopant as a possible trap

I-V irradiated Cree material

Comparisons of J-V measurements for irradiated Cree V doped SiC

UNIVERSITY

of **GLASGOW**

Spectra from irradiated diodes

100 V 150 V 200 V 250 V 300 V 350 V 400 V 450 V 500 V

Spectra taken for 5.48 MeV Am²⁴¹ α 's in vacuum after irradiation $10^{12} \,\pi \text{cm}^{-2}$

UNIVERSITY

of GLASGOW

CCE vs Voltage 10¹² pions cm⁻²

The evolution of the CCE with increasing detector bias

Spectra from irradiated diodes

Spectra taken for 5.48 MeV $Am^{241} \alpha$'s in vacuum after irradiation $10^{13} \pi cm^{-2}$

UNIVERSITY

of GLASGOW

CCE vs Voltage 10¹³ pions cm⁻²

The evolution of the CCE with increasing detector bias

Summary of V doped samples

- High resistivity gives low leakage current
- V dopant reduces maximum CCE due to trapping effects
- Has good radiation hard properties compared to GaAs and Si
 - SiC CCE reduced 15% after pion irradiation
 - •GaAs CCE reduced 50 % after similar dose
 - •Si CCE reduced 30 % after similar dose
 - -both had increased bias voltages to achieve lower CCE
 - •Reasonably promising initial results

Okmetic (non-V doped) semi-insulating material

- Grown by MOCVD method.
 - Specialised growth process reduces unintentional dopants
- Has no added vanadium
 - should remove limitation on CCE
- High resistivity
 - low leakage current, high field build up possible

of

I-V Okmetic material UNIVERSITY **GLASGOW**

Pulse height spectra Okmetic material

Initial work spectra measurements showing an approximated Gaussian curve over pulse height spectra, peak energy approx. 5.4 MeV

Design of RD50 test mask UNIVERSITY of

Potential problems

- Large pads increase the leakage current
 increases noise
- Greater possibility of defects under the pad
 possibly reducing Schottky barrier height
- Reduces number of pads available for testing from a single wafer, especially epi-layers

- more wasted material, not cost effective

Proposed solution

• Reduce pad size

– ranges of 250 -1500 μm

- Vary pad geometry
 - groups of circular and square pads
 - number of guard rings to be discussed 1,2,3 etc
- This increases used area and number of potentially successful devices from better epi-layer material

Conclusions

- Bulk SiC has been shown to be more
 - resistant to radiation than Si, GaAs
- Initial tests using the Okmetic non-doped S.I. material promising.
- Current mask design has not met expectations.
- Alternative mask structure proposed