GaN for use in harsh radiation environments

Andrew Bluea

(W Cunninghama, J Granta, M Rahmana, E Gaubasb, J Vaitkusb, V Cindroc, M Molld, M Glaserd)

a University of Glasgow, b Vilnius University, c Jozef Stefan Institute, d CERN

7th May 2004
Outline

- Properties of GaN
- Material Characterisation
- CCE Experimental Setup
- Irradiation
 - X-Rays
 - Neutrons
 - Protons
- Comparisons to Existing Data
- Conclusions & Future Work

7th May 2004
Properties of GaN

GaN (Gallium Nitride)

- Compound Semiconductor (n-type)
- Direct Wide Bandgap (~3.4eV)
- High Density (6.15gcm⁻³)
- High Threshold Voltage

=> Ideal material for ionising radiation detector

Also applications in blue and UV wavelengths such as lasers and high-brightness LEDs.

7th May 2004
Material Properties

- Material used was Semi-Insulating (SI) GaN
- Grown by MOCVD on Sapphire (Al_2O_3) substrate
- Increased resistivity caused by altering TMG flow rates and growth temperature for growth capping layer
Photoluminescence

- Excitation by cw HeCd laser, 20mW @ 325nm
- PL signal dispersed by double monochromator
- Signal detected using UV enhanced photomultiplier

The observed spectra consist of 3 bands.

(UVB) band 3.42eV => Band-to-band recombination

Blue (BB) band 2.85eV => The 60°-type basal plane dislocations

Yellow (YB) band 2.19eV => Point Defects e.g. complexes of Ga vacancy

PL Intensity \propto Defect Concentration

Concentration of point (Y PL) and structural (B PL) dislocations increases with TMG flow rate

7^{th} May 2004
Technique

- To test material’s performance in harsh radiation environments
 - Perform material characterisation (I-V, CCE)
 - Irradiate diodes to a range of known fluencies
 - Repeat I-V, CCE measurements
I-V characteristics
α setup for CCE measurements

5.48 MeV α particles from Am241 source
Energy Deposited in 2μm of GaN ~ 553keV

Detector and Source housed in vacuum chamber (P ~20 mbar)

Measurement setup consisted of
- Charge sensitive pre-amplifier
- Shaper amplifier with a shaping time of 1μs,
- Connected to a pulse height analyser

Energy calibration of the detection system was carried out using Si surface barrier diode assumed to have 100% CCE

Correcting for difference between electron-hole pair creation energy in Si (3.62eV) and GaN (8.9eV)

\Rightarrow Assign energies to the peaks of the observed spectra.

\Rightarrow Calculate the c.c.e. of the detector

7th May 2004
CCE for Unirradiated GaN

- Range of Voltage 0-28V
- CCE = 95%

7th May 2004
X-rays

- Material irradiated at Imperial College London

- Irradiated to a fluence of 600MRad 10keV x-rays
I-V, CCE for x-rays

7th May 2004
CCE for x-rays

- Range of Voltage 0-28V
- CCE ~ 100%

7th May 2004
n irradiation

- Material irradiated at Ljubljana Neutron Irradiation Facility
- Samples irradiated to fluences of
 - 10^{14} n/cm2
 - 10^{15} n/cm2
 - 10^{16} n/cm2
- Fluences quoted are 1MeV neutron NIEL equivalent
I-V for n irrad

7th May 2004
CCE for n irrad

10^{14} n, CCE ~ 77

10^{15} n, CCE ~ 10

10^{16} n/cm2, CCE ~ 5

7th May 2004
p irradiation

- Material irradiated at CERN
- Samples irradiated to fluence of 10^{16} p/cm2
- 24GeV/c proton beam
I-V for p irrad.
Comparisons

<table>
<thead>
<tr>
<th>Material</th>
<th>Unirradiated CCE</th>
<th>Irradiated CCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>100 % (MIPS) [2]</td>
<td>50 % (2×10^{14} 24GeV protons/cm²) [2]</td>
</tr>
<tr>
<td>SiC (100 µm bulk V doped)**</td>
<td>60 % (5.486 Am²¹⁺ alpha) [3]</td>
<td>50 % (10^{13} 300 MeV/c pions/cm²) [3]</td>
</tr>
<tr>
<td>SiC (epi layer 30 µm)</td>
<td>90 % (5.486 Am²¹⁺ alpha) [4]</td>
<td>60 % (10^{14} 24 GeV/c protons/cm²) [5]</td>
</tr>
<tr>
<td>Diamond</td>
<td>24 % (Mips) [6]</td>
<td>18 % (10^{13} 300 MeV/c pions/cm²) [6]</td>
</tr>
<tr>
<td>GaN</td>
<td>95 % (5.486 Am²¹⁺ alpha)</td>
<td>77 % (10^{14} 1 MeV neutrons/cm²) 10% (10^{15} 1MeV neutrons/cm²) 5% (10^{16} 1MeV neutrons/cm²)</td>
</tr>
</tbody>
</table>

Si assumed to have 100 % CCE for all radiation types before irradiation
** 10^{18} cm⁻³ Vanadium (V) doped SiC maximum CCE 60 % [7]

[7] Simulations carried out by T. Quinn et al to be presented
Results

- Evidence of increased TMG flow rate proportional to defect density

- Increase in leakage currents is non linear for increased irradiation levels

- CCE measurements
 - Unirradiated, CCE ≈ 95%
 - 600Mrad X-ray, CCE ≈ 100%
 - 10^{14}n/cm^2, CCE ≈ 77%
 - 10^{15}n/cm^2, CCE ≈ 10%
 - 10^{16}n/cm^2, CCE ≈ 5%
Conclusions and Future Work

• Demonstrated the potential of SI GaN for room temperature ionising radiation detectors

• Require further tests beyond preliminary results shown until now
 – Full range of n/p irradiations between 10^{14}-10^{16}
 – Perform CCE measurements at varying temperatures

• Further improvement possible as the growth technology of GaN develops.
 – Begin testing on fabricated diodes on Bulk GaN
 – Use different material (CST, compensated)

• Detailed investigation of defects post irradiation
 – DLTS
 – MWA / PC
 – TSC