4th RD50 - Workshop on radiation hard semiconductor devices for very high luminosity colliders

GaN for use in harsh radiation environments

Andrew Blue^a

(W Cunningham^a, J Grant^a, M Rahman^a, E Gaubas^b, J Vaitkus^b, V Cindro^c, M Moll^d, M Glaser^d)

a University of Glasgow, b Vilnius University, c Jozef Stefan Institute, d CERN

Outline

- Properties of GaN
- Material Characterisation
- CCE Experimental Setup
- Irradiation
 - X-Rays
 - Neutrons
 - Protons
- Comparisons to Existing Data
- Conclusions & Future Work

Properties of GaN

- GaN (Gallium Nitride)
- Compound Semiconductor (n-type)
- Direct Wide Bandgap (~3.4eV)
- High Density (6.15gcm⁻³)
- High Threshold Voltage
 - => Ideal material for ionising radiation detector

Also applications in blue and UV wavelengths such as lasers and high-brightness LEDs.

Material Properties

- Material used was Semi-Insulating (SI) GaN
- Grown by MOCVD on Sapphire (Al_2O_3) substrate
- Increased resistivity caused by altering TMG flow rates and growth temperature for growth capping layer

100nm Au shottky contacts 2-2.5micron capping layer 2micron n* buffer layer Sapphire (0001) plane

7th May 2004

Photoluminesence

- Excitation by cw HeCd laser, 20mW @ 325nm
- PL signal dispersed by double monochromator
- Signal detected using UV enhanced photomultiplier

The observed spectra consist of 3 bands.

(UVB) band 3.42eV=> Band-to-band recombination

Blue (BB) band 2.85eV=> The 60°-type basal plane dislocations

Yellow (YB) band 2.19eV=> Point Defects e.g. complexes of Ga vacancy

PL Intensity a Defect Concentration =>

Concentration of point (Y PL) and structural (B PL) dislocations increases with TMG flow rate

7th May 2004

- To test material's performance in harsh radiation environments
 - Perform material characterisation (I-V, CCE)
 - Irradiate diodes to a range of known fluencies
 - Repeat I-V, CCE measurements

I-V characteristics

α setup for CCE measurements

5.48 MeV α particles from Am²⁴¹ source Energy Deposited in 2µm of GaN ~ 553keV

Detector and Source housed in vacuum chamber (P ~20 mbar)

Measurement setup consisted of

- Charge sensitive pre-amplifier
- Shaper amplifier with a shaping time of 1µs,
- Connected to a pulse height analyser

Energy calibration of the detection system was carried out using Si surface barrier diode assumed to have 100% CCE

Correcting for difference between electron-hole pair creation energy in Si (3.62eV) and GaN (8.9eV)

=> Assign energies to the peaks of the observed spectra.

=> Calculate the c.c.e. of the detector

Energy deposition vs. Penetration depth (Bragg curve) of 5.48 MeV α , particles in GaN calculated, calculated using the SRIM code

CCE for Unirradiated GaN

Range of Voltage 0-28V
CCE = 95%

- Material irradiated at Imperial College London
- Irradiated to a fluence of 600MRad 10keV x-rays

I-V, CCE for x-rays

CCE for x-rays

Range of Voltage 0-28V CCE ~ 100%

n irradiation

- Material irradiated at Ljubljana Neutron Irradiation Facility
- Samples irradiated to fluences of
 - $10^{14} \, \text{n/cm}^2$
 - $10^{15} \,\mathrm{n/cm^2}$
 - $10^{16} \, \text{n/cm}^2$
- Fluences quoted are 1MeV neutron NIEL equivalent

I-V for n irrad

CCE for n irrad

 10^{14} n/cm², CCE ~ 77% 10^{15} n/cm², CCE ~ 10% 10^{16} n/cm², CCE ~ 5%

- Material irradiated at CERN
- Samples irradiated to fluence of 10^{16} p/cm^2
- 24GeV/c proton beam

I-V for p irrad.

Comparisons

Material	Unirradiated CCE	Irradiated CCE
GaAs	100 % (MIPS) [2]	$50 \% (2x 10^{14} 24 \text{GeV protons/} \text{cm}^2) [2]$
SiC (100 µm bulk	$60 \% (5.486 \text{ Am}^{241} \text{ alp ha})$	$50\% (10^{13} 300 \text{ MeV/c pions/cm}^2)$
V doped) **	[3]	[3]
SiC (epi layer 30	$90\%(5.486 \text{ Am}^{241} \text{ alpha})$	$60 \% (10^{14} 24 \text{ GeV/c protons/cm}^2)$
μm)	[4]	[5]
Diamond	24 % (Mips) [6]	$18\% (10^{15} 300 \text{ MeV/c pions/cm}^2)$
		[6]
GaN	$95 \% (5.486 \text{ Am}^{241} \text{ alpha})$	77 % $(10^{14} 1 \text{ MeV neutrons/cm}^2)$
		$10\% (10^{15} 1 \text{MeV neutrons/cm}^2)$
		$5\% (10^{16} 1 \text{MeV neutrons/cm}^2)$

Si assumed to have 100 % CCE for all radiation types before irradiation ** 10¹⁸ cm⁻³ Vanadium (V) doped SiC maximum CCE 60 % [7]

[2] U. Biggeri et al, 'Noise behaviour of semi-insulating GaAs particle detectors before and after proton irradiation', Nucl. Phys. B (Proc. Suppl.) 78 (1999), 527-532
[3] W. Cunningham et al, 'Performance of irradiated bulk SiC detectors', Nucl.Instr.and Meth. A

509 (2003), 127- 131

[4] G. Verzellezi et al, 'Investigation on the charge collection properties of a 4H-SiC Schottky diode detector', Nucl.Instr.and Meth. A 476 (2002), 717-721
[5] F. Nava et al, 'Radiation tolerance of epitaxial silicon carbide detectors for electrons, protons and gamma-rays', Nucl.Instr.and Meth. A 505 (2003), 645-655
[6] W. Adam et al, 'Radiation tolerance of CVD diamond detectors for

pions and protons', Nucl.Instr.and Meth. A 476 (2002), 686-693

[7] Simulations caried out by T. Quinn et al to be presented

7th May 2004

Results

- Evidence of increased TMG flow rate proportional to defect density
- Increase in leakage currents is non linear for increased irradiation levels
- CCE measurements

 Unirradiated, CCE ~ 95%
 600Mrad X-ray, CCE ~ 100%
 10¹⁴n/cm², CCE ~ 77%
 10¹⁵n/cm², CCE ~ 10%
 10¹⁶n/cm², CCE ~ 5%

Conclusions and Future Work

- Demonstrated the potential of SI GaN for room temperature ionising radiation detectors
- Require further tests beyond preliminary results shown until now
 - Full range of n/p irradiations between 10¹⁴-10¹⁶
 - Perform CCE measurements at varying temperatures
- Further improvement possible as the growth technology of GaN develops.
 - Begin testing on fabricated diodes on Bulk GaN
 - Use different material (CST, compensated)
- Detailed investigation of defects post irradiation
 - DLTS
 - MWA / PC
 - TSC