# Ongoing Pixel developments: A very partial summary

D. Bortoletto RD50 May, 2004

## LHC

We can identify 3 different regions to match radiation damage and occupancy in the current LHC detector

#### **SLHC**

Radiation fluence increases by about a factor of 10 from one region to the other and by a factor of 10 between LHC and SLHC.

| R           | Φ                | Technology                                                                        | R        | Φ                       | CCE  | Technology                                        |
|-------------|------------------|-----------------------------------------------------------------------------------|----------|-------------------------|------|---------------------------------------------------|
| >50 cm      | 10 <sup>13</sup> | p-on-n strip 500 μm<br>thick, high resistivity<br>(≈5 KΩ·cm), pitch ~<br>200 μm   | >50 cm   | <b>10</b> <sup>14</sup> | 20ke | Present rad-<br>hard<br>technology<br>(or n-on-p) |
| 20-50<br>cm | 10 <sup>14</sup> | p-on-n strips 320 μm<br>thick, low resistivity<br>(≈2 KΩ·cm), pitch ~80<br>μm     | 20-50 cm | 10 <sup>15</sup>        | 10ke | Present<br>n+-n LHC<br>pixel<br>(or n-on-p)       |
| <20 cm      | 10 <sup>15</sup> | n-on-n pixels 270 μm<br>thick sensors low<br>resistivity (≈2 KΩ·cm)<br>oxygenated | <20 cm   | 10 <sup>16</sup>        | >5Ke | RD needed                                         |

# Pixel R&D is complex

#### Complicated ROC

Few groups have in house bump-bonding facilities (PSI and UC-Davis)

Bump Bonding vendors are costly

Current activities are very detector dependent

A lot of pixel developments for LC: DEPFETs, MAPS, FAPS etc....

# MCz silicon

#### MCz promises to be more rad hard than FZ



# MCz and thin sensors

- Purdue is processing 5 MCz wafers (thanks to M. Moll and Jaakko) with Sintef using CMS/ FPix masks.
  - Allows easy comparison of FZ, DOFZ and MCz.
  - Sensors have standard CMS FPix design
- Purdue, Rochester and BNL are processing MCz wafers containing pixel and strip sensors at BNL. Some of the strip sensors have the CDF-L00 layout
- Purdue is processing thin wafers with Micron (150 µm -200 µm )



#### **BNL** wafer

Designed by G. Bolla



Mask design in process. Detectors available in about 6 months

#### Designed by G. Bolla and K. Giolo

#### **SINTEF** wafer



Detectors delivery expected on September 1

#### 1x1 sensor

D. Bortoletto RD50 May, 2004

#### **Thin silicon R&D**

 We have received thin silicon strips sensors (fabricated with CDF-LOO masks)
 We will compare: 150, 200 and 300 µm thick strip detectors

- DC measurements
- Performance studies using the SVX4 chip developed for the so called "run 2b" of the Tevatron
- Pixel masks have been designed. Each 6" wafer will contain:
  - Several pixels sensors matching the CMS  $\frac{1}{4}$  micron chip (100  $\mu$ m× 150  $\mu$ m) developed by PSI
  - RD50 PAD structures for SLHC
  - Test structures to study bump bonding

Pixel sensors should be available for first tests in about 1 month.

## **Thin Pixel Mask Layout**



 Masks (6") are fabricated and processing (oxygenation) started in January. Devices should be available in ~ 1 month

![](_page_9_Figure_0.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_11_Figure_0.jpeg)

#### As usual diodes and other test structure for process control

![](_page_12_Picture_1.jpeg)

D. Bortoletto RD50 May, 2004

## Other activities

- S. Parker is fabricating pixel sensors for several projects
  - planar/3D active edge for NIH protein crystallography project
  - full 3D active edge for Atlas beam test.
  - TOTEM beam test and high-speed pulse tests with the CERN fast 0.13 micron transimpedance amplifier (Anelli, Jarron, et al.) use full 3D active edge sensors connected to strip readout.

## Other activities

Several groups are performing pixel simulation:

- Syracuse, Purdue and JHU (see M. Swartz talk)
- Uni Zurich (M. Chioggia), PSI, Milan (see T. Lari's talk)

Aim at comparison between simulation of charge collection properties of different technologies at various irradiation level with experimental data.

- Syracuse: BTeV R&D project
- JHU and Purdue: CMS

#### Simulation p+- n+ /n /n+

![](_page_15_Figure_1.jpeg)

```
Use ISE-TCAD
```

Before irradiation: N<sub>eff</sub>=10<sup>13</sup> cm<sup>-3</sup>

■ V <sub>fd</sub>= 400 V, CCE~98%

- After radiation: Neff= -1x10<sup>13</sup> /cm<sup>3</sup> (φ=5x10<sup>14</sup>n/cm<sup>2</sup>)
  - V <sub>fd</sub>= 150 V, CCE: 91 %

■ Larger fluence ⇒ increase of collection time.

![](_page_15_Figure_8.jpeg)

Nabil Menaa Syracuse and J. Miyamoto, Purdue

## **CCE** measurements

- Beam test area is now working at Fermilab.
- Laser measurements at Purdue and Fermilab
  - Use 1064 nm laser to study the CCE of pixel systems
  - Beam size about 10 μm

## **Sensor Geometry**

Implanted n+-pixel (metalized)~98% P-stops rings 8µm wide with 12 µm gaps Metal grid on the pside Contact between the AI and n+ pixels

![](_page_17_Picture_2.jpeg)

## Laser Scan

![](_page_18_Figure_1.jpeg)

# Design and test of innovative CMOS pixel detectors D. Passeri<sup>(1, 2)</sup>, P. Placidi<sup>(1, 2)</sup>, M. Petasecca<sup>(1, 2)</sup>, P. Ciampolini<sup>(1,3)</sup>, G. Matrella<sup>(1, 3)</sup>, A. Marras<sup>(3)</sup>, G.M. Bilei<sup>(1)</sup>

![](_page_19_Picture_1.jpeg)

(1) Istituto Nazionale di Fisica Nucleare Sezione di Perugia – Italy

![](_page_19_Picture_3.jpeg)

(2) Dipartimento di Ingegneria Elettronica e dell'Informazione Università degli Studi di Perugia - Italy

![](_page_19_Picture_5.jpeg)

(3) Dipartimento di Ingegneria dell'Informazione
 Università di Parma - Italy

![](_page_20_Picture_0.jpeg)

![](_page_20_Figure_1.jpeg)

- Pixel architecture 2
   PMOS 1NMOS + N-well
   Diode
- Internal gain ~ 10
- WIPS = Weak Inversion
   P-MOS
- Pixel area 10  $\mu$ m× $\mu$ m
- Dead Area 15%
- Signal =70-80 mV/MIPS
- $\Delta T(readout)=2N_{CLK}$
- N<sub>CLK</sub>~10 MHz

![](_page_21_Picture_0.jpeg)

#### Designed and fabricated in a commercial 0.18 µm CMOS technology

![](_page_21_Picture_2.jpeg)

- $\cdot$  11 APS arrays
- 8 WIPS arrays
- test structures
- open-lid, JLCC84 case
- · 2 bonding schemes

![](_page_21_Picture_8.jpeg)

![](_page_22_Picture_0.jpeg)

#### APS preliminary results

![](_page_22_Figure_2.jpeg)

Pixel (0,0), Array 01: dark condition response Pixel (0,0), Array 01: light response

![](_page_23_Picture_0.jpeg)

#### Preliminary test results on RAPS01:

- both pixel schemes functional
- promising performance

#### Extensive test to be completed:

- statistical characterization
- dynamic performance
- spatial resolution
- beam test

#### RAPS02 chip:

- performance tuning
- more effective exploitation of sparse-reading features
- on-chip signal processing

# Conclusions

Many groups are interested in pixel development.

- Possible overlap with active pixels developed for LC applications
- The RD50 pixel subgroup is just started and we are still finding out about different activities.