Results from the First Test Beam of a Large Microstrip Czochralski Silicon Detector Equipped with LHC Speed Electronics

4th RD50 Workshop 6th May 2004

UNIVERSITY of GLASGOW

A Bates, J Buytaert, P Collins, D Eckstein, J Kennedy, T Ketel, J Palacios, C Parkes, U Parzefall, I Stavitski, N Tuning

Thanks to Jaakko Harkonen

Helsinki Institute of Physics

The Cz Detector

First ever Czochralski silicon detector equipped with LHC speed electronics

- \mathbf{I} **380 \mum thick**
 - p-on-n MCz

- 1150 Ω cm (after processing)
- 50 μm pitch parallel strips
 - \blacksquare V_{dep} measured =420 V (CV)
 - 40 MHz analogue readout SCTA chips

07/05/2004

Procedure

- Test beam of Cz detector (2002)
- Harsh irradiation using CERN PS Facility (24 GeV protons)
- Annealing simulations (Hamburg model)
- A 2nd test beam to look at the irradiated Cz performance
 - **Aim** to study the CCE & S/N of the detector as a function of radiation and voltage

Test Beam Procedure

- Align the VELO telescope (8 VELO PR01 sensors)
- Use the aligned telescope to reconstruct the tracks left by 120 GeV μ &/or π 's
- Extrapolated the track to the Cz detector. Integrate the charge with ± 2 strips (strip pitch = 50 μ m)

Cz alignment accuracy:

Un-irradiated Cz test beam, $26.7 + 0.4 \ \mu m$

Irradiated Cz test beam,

Annealing

Unirradiated Cz V_{dep} measured to be 420 V

Annealing simulations for FZ silicon show expected V_{dep} to be: 7 x 10¹⁴ 24 GeV p/cm² = **1070** V 4.25 x 10¹⁴ 24 GeV p/cm² = **650** V 1.25 x 10¹⁴ 24 GeV p/cm² = **150** V

Charge Collection Efficiency

N.B. The ADC values can not be directly compared for the 2 test beams

07/05/2004

Alison Bates

Conclusions

- First successful study on Cz micro-strip detector with LHC speed electronics
- Un-irradiated S/N = 23.5+2.5
- S/N still good after harsh irradiation:
 - 0.5 years of VELO radiation environment S/N = 15
 - 2 years of VELO radiation environment S/N = 11
- While underdepleted!
- 3.5 years of VELO radiation environment S/N = 7

(1 year max. VELO fluence = $1.6 \times 10^{14} 24 \text{ GeV p/cm}^2$ / year)