Development of Radiation-hard Front Electronics for sLHC

Investigation of the SiGe Process

David E. Dorfan, Alexander A. Grillo, Hartmut F.-W. Sadrozinski,
 Bruce Schumm, Abraham Seiden, Ned Spencer
 SCIPP, Univ. of California, Santa Cruz, CA 95064

Synergy of detectors and readout electronics."Detectors and Electronics: *Are These Two Separate Subjects?*"(V. Radeka, 2003 IEEE NSS Portland, OR)

or:

When RD50 finds the ultimate radiation-hard detector material, surviving fluences in excess of 10¹⁶ n/cm² and TID of 300MRad, can we extract the signals?

F.E. Technologies for sLHC:

Sub-µm CMOS: "accidentally" rad-hard, low power, ideal for pixels

Bipolar : power-noise advantages for large capacitances and fast shaping, also excellent matching, used in ATLAS SCT
BiCMOS bipolar for analog front-end, CMOS for digital logic
BUT:

Silicon technologies show current gain β degrading with radiation, for LHC from about 100 to about 40 at 10¹⁴cm⁻²
Present Si bipolar technologies are not rad-hard enough for sLHC.
It has been a struggle to have access with them, especially in proto-typing.

Enter SiGe

Epitaxial technology

Very fast: f_T of 50GHz and up,Very high current gain $\beta > 200$ Rad hard:but how hard is "rad-hard" (measured up to 10^{14} cm⁻²)
(advantage: start out with higher β and FT)married to sub-µm CMOS to make rad-hard BiCMOSDriven by communications industry: is here to stayOffered by MOSIS for manufacturing at IBM

Case study of advantages of SiGe Bipolar vs. CMOS

Power required for a front-end amplifier designed with a 20ns shaping time (ATLAS SCT) using the two technologies, SiGe bipolar and $0.25 \ \mu m$ CMOS.

The SiGe version is shown to require about 1/3 of the power of the CMOS version for the same noise performance.

For shorter shaping times, the advantage would become even more pronounced. For certain radiation hard detectors, such as diamond, shaping times under 10 ns are optimal; and for some potential applications, as an upgraded LHC, shaping times of 10-12 ns may be necessary.

The technology, therefore, appears to be extremely promising, provided that it is sufficiently radiation resistant.

Power of SiGe Bipolar vs. CMOS

CHIP TECHNOLOGY				
	0.25 µm CMOS ABCDS/FE		IBM 7HP SiGe	
FEATURE	(Jan Kaplon et al., 2002)		(Ned Spencer et al.)	
Power: Bias for all but front	400 µA	1 mW	80 µA	0.2 mW
transistor				
Power: Front bias for 25 pF load	550 µA	1.38 mW	195 µA	.49 mW
(Total power)		(2.4 mW)		(0.69 mW)
Power: Front bias for 7 pF load	120 µA	0.3 mW	60 µA	0.15 mW
(Total power)		(1.3 mW)		(0.35 mW)
Channel-to-channel matching at	+/- 6%		+/- 4%	
comparator				
Band gap reference available	Probably not		Yes	
with radiation resistance				
Noise for 24pF load	1480		1360	

Why Faster Shaping?

At 40 MHz LHC operation, and charge collection times of about 20ns, the 20ns shaping time of the ATLAS SCT makes sense to tag single beam buckets.

BUT:for sLHC, the machine frequency will be doubled.ALSO:For LC, interest to tag out-of-time tracks from $\gamma - \gamma$

So investigate if SSD can be operated with 100MHz clock, without ballistic deficit and acceptable noise penalty.

Increase SSD biasing voltage (decrease collection time τ_C) decrease shaping time τ_S (Bruce Schumm, John Jaros)

Charge Collection in Si

(thanks to Morris Swartz, JHU)

300um thickness,50um pitch60V depletion voltage

p-on-n	Collection Time [ns] 100V 300V		
Holes	14	7	
Electrons	5	2.5	

N-on-p factor two faster.

10 ns shaping and 300V bias allows 100Mhz time tagging.

SiGe R&D Program

(to US DoE Advanced Detector Research Program)

Collaboration with John Cressler's group at the Georgia Institute of Technology

Year 1: Spice simulation of amplifier circuits,

Design and fabrication of test structures and simple circuit elements

Test matching, radiation hardness {including degradation of β and noise increase} and other parameters.

Year 2: Design and fabrication of a front-end ASIC for readout of silicon strip detectors and thorough characterization.

Compare the SiGe performance to other options.

Year 3: Perform radiation tests to understand the limits of the technology. Integrate with silicon strip detectors and evaluate noise performance.

In Partial Fulfillment of the Requirements for RD50 Membership:

The Group:

SCIPP, Univ. of California, Santa Cruz, CA 95064

David E. Dorfan, Alexander A. Grillo, Hartmut F.-W. Sadrozinski, Bruce Schumm, Abraham Seiden, Ned Spencer

Interests:

- Development of Radiation-hard Front Electronics for sLHC (SiGe)
- n-on-p detectors
- 3-D detectors
- System Aspects

ASIC	Detector	Experiment	Reference	Technology	Foundry	Challenge
Microplex	SSVD	Mark II	Nucl.Instrum.Meth.	NMOS	Gould-AMI	N
		(SLC)	A313:63-102,1992	5 um		
TEKZ	LPS	ZEUS	Nucl.Instrum.Meth.	Bipolar	Tektronix	R, N
		(HERA)	A364:507-515,1995			
DTSC	LPS	ZEUS	Nucl.Instrum.Meth.	Rad-hard	UTMC	R, P
		(HERA)	A288:209-211,1990	CMOS		
LBIC	Si TKR	SDC (SSC)	IEEE Trans.Nucl.Sci.	Bipolar	Tektronix	R, N, S, P
			42:796-802,1995			
CDP	Si TKR	SDC (SSC)	IEEE Trans.Nucl.Sci.	Rad hard	Honeywell	R, P
			44:736-742,1997	CMOS		
CAFE	SCT	ATLAS	IEEE Trans.Nucl.Sci.	Bipolar	AT&T	R, N, S, P
		(LHC)	41:1095-1103,1994			
CAFE	SCT	ATLAS	IEEE Trans.Nucl.Sci.	Bipolar	Maxim	R, N, S, P
		(LHC)	49:1106-1111,2002			
ABCD	SCT	ATLAS	IEEE Trans.Nucl.Sci.	BiCMOS	DMILL	R, N, S, P
		(LHC)	47:1843-1850,2000			
ATOM	SVT:	BaBar	IEEE Trans.Nucl.Sci.	Rad-hard	Honeywell	R, N
		(PEP 2)	44:289-297,1997	CMOS		
DCAC	CDC	BaBar	Nucl.Instrum.Meth.	Bipolar	Maxim	N, S,
		(PEP 2)	A409:310-314,1998	semi-custom		
GTFE	TKR	GLAST	IEEE TNS 45,	0.5 um	Agilent	N, P
			pp. 927-932, 1998	CMOS		
GTRC	TKR	GLAST	Nucl.Instrum.Meth.	0.5 um	Agilent	Р
			A457:126-136,2001	CMOS		
LC	SILC	LC		0.25 um	TSMC	N, P
				CMOS		

Front-end ASIC Development to which SCIPP has contributed

N = noise, R = radiation hardness, S = speed, P = power

Radiation Damage Pedigree of SCIPP Group

SSD Detectors

Change in Effective Donor Concentration Temperature Effects in Annealing of Radiation Damage N-on-n detectors CCE

<u>ASICs</u>

Rad-hard CMOS (UTMC, Honeywell) Rad-hard Bipolar (Maxim, AT&T, DMILL) Low-dose effects SEE effects