TCT measurements on Magnetic-Cz and Fz material

G. Kramberger, I. Mandić Jozef Stefan Institute, Ljubljana

Motivation:

Is Okmetic-Cz material inverted after proton irradiation?

- •how to determine space charge sign in irradiated silicon
- •how to interpret the measurements

Helsinki samples from Jakko Haerkoenen

•Fz - 1.2 kΩcm (*V_{FD}*=260 V), 300 μm

•Okmetic(magnetic) Cz - 1.1 k Ω cm (V_{FD} =300 V), 300 μ m

Irradiation:

•fluence: 1x10¹⁴ p/cm² (Fz,Cz)

•fluence: 5x10¹⁴ p/cm² (Fz,Cz)

History: samples were annealed 2 weeks at RT

Measurements: TCT using the red laser

How to interpret Q(U) curves - diodes irradiated to "low" fluence?

TCT current pulses - diodes irradiated to "low" fluence?

t[ns]

0.1

Fz-1e14

t[ns]

0.15

0.05

.1⊨

Fz—1e14

Cz – Irradiated to 5e14

Charge plot for electrons/holes show that N_{eff} is not constant Large hole signal (charge) already at low voltages – injection in electric field region

Both electron and hole seems to be injected in high field region, but... what we measure/see is damped by trapping of the drifting charge

$$I_{e,h}(t) = N_0 \exp(\frac{-t}{\tau_{eff_{e,h}}}) \frac{1}{D} v_{e,h}(t)$$

To derive the electric field profile/space charge sign you must take trapping into account!

HOLE SIGNALS – Cz detector

TCT Measurement @ T=-10 C

<u>After full depletion</u> the slope of I(t) does not change sign N_{eff} is of the same sign – not inverted !

larger U -> larger slope -> change in Neff rough explanation:

trapping of the free carriers (leakage current) is responsible for change in N_{eff}

$$I_{e} = -e_{0} \cdot n \cdot v_{e}$$

$$I_{h} = e_{0} \cdot p \cdot v_{h}$$

$$\rightarrow n, p \text{ depend on } U, \text{ hence occupation probability and } N_{eff} \text{ as well}$$

ELECTRON SIGNALS – Cz detector

Same conclusions can be drawn as from the hole signal!

For FZ material it is impossible to determine the space charge sign!

Determination of trapping times

Using CCM/ECC the trapping times were derived. For both materials they are compatible with previous measurements! no dependence of trapping times on material type

Conclusions

2 Fz and 2 Magnetic-Cz diodes irradiated to 10¹⁴ cm⁻² and 5x10¹⁴ cm⁻² were studied!

Cz material is found not-inverted at voltages above V_{FD} for both fluences (below full depletion voltages sign of the space charge is not well defined), while Fz material is inverted at larger fluence !

In order to determine sign of the space charge from TCT signals one must take trapping into account!

In many cases space charge sign can be deduced also from Q(V) plot!

Electric field profile in the detector (diode)

induced current pulse shape (measured) extract E(x) (E(x(t)), x(t)) weighting field (pad detector-1/D) mobility parameterization (literature) effective trapping times of *e*,*h* determine $N_{eff}(x)$ $(I_{e,h}(t)) = N_0 \exp(\frac{-\iota}{\tau_{eff_{e,h}}}) \frac{1}{D} v_{e,h}(t)$ input-meas. parameters $(x_{e,h}(t)) = \int_{t_0}^t I_{e,h}(t') \frac{D}{N_0} \exp(\frac{t'}{\tau_{eff_{e,h}}}) dt' \implies D = x_{e,h}(t_t)$ unknown parameters $v_{e,h}(t) = \mu_{e,h}(E(t)) E(t) = I_{e,h}(t) \frac{D}{N_0} \exp(\frac{t}{\tau_{eff}})$

More reliable determination from holes signals (longer signal, less influence of laser width)!

Figure 5.15 : a.) Induced current after hole injection for sample W317 irradiated with neutrons to $\Phi_{\rm eq} = 7.5 \cdot 10^{13} \text{ cm}^{-1} (V_{FD} = 103 \text{ V})$. Measurements were performed at $T = 10^{\circ}$ C. b.) The induced currents from a.) are scaled with $\sqrt{10 \text{ V/U}}$. The scaling factor is given in brackets.

$$t_c = \frac{w}{v_{dr_h}} = \frac{w^2}{\mu_{0_h} U} \propto \frac{1}{\mu_{0_h}} , \quad w^2 \propto U.$$

Standard material irradiated with <u>neutrons:</u>

Oxygenated material irradiated with <u>neutrons:</u>

Standard material irradiated with <u>protons:</u>

Oxygenated material irradiated with <u>protons:</u>

Oxygenated material irradiated with protons to high fluence

In oxygenated material electric field is more uniform (lower V_{FD}) after irradiation with charged hadrons compared to standard material!

G. Kramberger, Jožef Stefan Institute, Ljubljana, Slovenia Signal formation in irradiated silicon detectors, Hamburg, March 2001

Standard material irradiated with <u>protons</u> to high fluence

Less overdepletion is needed for the same CCE, but at high voltages there should not be any difference!

