Computer Simulation and AFM characterization of irradiated Si PIN

Arie Ruzin, I. Torchinski School of EE, Tel Aviv University, Israel

<u>OUTLINE</u>

- Atomic Force Microscopy methods
- Experimental results with new and irradiated PIN structures
- Trap dominated semiconductors: is there type inversion ?
- Computer simulation of "double junction" with recent trap data
- Summary (?)

Atomic Force Microscope

AFM – Topography Measurement

Taping Mode

- The cantilever is vibrated far from the sample and the amplitude dependence of frequency is monitored by PSD
- The cantilever vibrated near the resonance frequency approaches the sample
- The tip comes close to the surface (a few nm) starts sensing Van der
 Waals force, which changes the vibration amplitude
- The vibration amplitude is monitored by PSD
- The PSD Feedback signal controls the sample to tip distance by a piezo motor

Atomic Force Microscope : Surface Potential Difference – SPD or Contact Potential Difference - CPD

 $-qV_{SPD} = \phi_{Tip} - \phi_{SC}$

SPD measurement

Lift Mode for SPD

- Four passes are made over each line: two in taping mode, and two in lift mode
- During the taping passes the topography data is recorded
- During the Lift Mode® passes the tip is lifted by typically 50-100nm above the sample (using topography information)
- ac (ω_0) potential is applied between the tip and the sample
- DC bias is added by feedback circuit to the ac potential to eliminate cantilever vibrations at ω_0

SPD measurement

The force between the tip and the sample is:

$$F = -\frac{dU}{dz} = -\frac{1}{2}\frac{dC}{dz}V^{2} = -\frac{1}{2}\frac{dC}{dz}\left\{\left(V_{DC} + V_{SPD}\right) + V_{A}\sin(\omega_{0}t)\right\}^{2} = -\frac{1}{2}\frac{dC}{dz}\left\{\left(V_{DC} + V_{SPD}\right)^{2} + 2\left(V_{DC} + V_{SPD}\right)V_{A}\sin(\omega_{0}t) + V_{A}^{2}\sin^{2}(\omega_{0}t)\right\}^{2} = -\frac{1}{2}\frac{dC}{dz}\left\{\left(V_{DC} + V_{SPD}\right)^{2} + \frac{V_{A}^{2}}{2}\right] + 2\left(V_{DC} + V_{SPD}\right) \times V_{A}\sin(\omega_{0}t) - \left(\frac{V_{A}^{2}\cos(2\omega_{0}t)}{2}\right)\right\}$$

The cantilever is elastic and will response to the force. The vibration mode at frequency ω_{ρ} will become zero when $V_{DC} = -V_{SPD}$.

Atomic Force Microscope : Surface Potential Difference - SPD

 $-qV_{SPD} = \phi_{Tip} - \phi_{SC}$

May 2004 4th RD-50 Workshop - CERN

Atomic Force Microscope

Device under test

May 2004 4th RD-50 Workshop - CERN

SPD measurement Non-Irradiated device

SPD measurement Irradiated device

Effect of Deep Acceptors in n-type Si

Effect of Deep Donors in n-type Si

May 2004 4th RD-50 Workshop - CERN

E-field variations in n-type Si due to deep "acceptors" <u>at midgap</u>

May 2004 4th RD-50 Workshop - CERN

E-field variations in n-type Si due to deep "donors" <u>at midgap</u>

May 2004 4th RD-50 Workshop - CERN

Candidates for deep "donors" and "acceptors"

E(147) ¹	E _t =-0.37eV, σ_n =2.2×10 ⁻¹⁵		$\Gamma(240)^{3}$	$E_t=0.68, \sigma_p=\sim 5 >> \sigma_n DA$
H(147) ¹	$E_t = -0.363, \sigma_n = 2.45,$		H(97) ^{4,3}	E _t =0.23, σ_p =~0.5 DD?
E(158) ¹	E_t =-0.393, σ_n =1.3,		E(50)	DA?
H(165) ¹	$E_t=0.4, \sigma_n=1.5,$		BD(98)	DD, E _t =-0.15
E(168) ¹	$E_t = -0.42, \sigma_n = 2.1,$		H(42)	
H(173) ¹	$E_t=0.437, \sigma_n=2.5,$		H(47)	
E(174) ¹	$E_t = -0.456, \sigma_n = 5,$		E(3) ⁵	$E_t = -0.17, \sigma_n = 0.1$
E(186) ¹	$E_t = -0.48, \sigma_n = 4,$		E(6) ⁵	$E_t = -0.42, \sigma_n = 2$
I(200) ⁴	E _t =-0.58, σ_n =1.7, σ_p =0.9, DA, γ		H(1) ⁵	E _t =0.36, σ_p =2
I(200)*	E_t 0.58, $σ_n$ -1.7, $σ_p$ -0.9, DA, γ	7	H(I) ³	$E_t = 0.30, \sigma_p = 2$

I. Pintilie, et at., NIM A476 (2002), p. 652-657
 <u>I. Pinti</u>lie, et at., APL 81, No 1 (2002), p. 165

2), p. 165 5. E. Fretwurst, et al., NIM A377, (1996), p. 258

3. I. Pintilie, et at., APL in press

E-field variations in n-type Si due to Deep Acceptors +Donors

 $E_{tD}=0.53 eV$

E-field variations in n-type Si due to Deep Acceptors +Donors

May 2004 4th RD-50 Workshop - CERN

Trapped Carriers in n-type Si due to Deep Acceptors + Donors

May 2004 4th RD-50 Workshop - CERN

Free Carriers in n-type Si due to Deep Acceptors + Donors

May 2004 4th RD-50 Workshop - CERN

Cleaved Surface Sensitivity to Interface Traps

Computer Simulation

May 2004 4th RD-50 Workshop - CERN

Cleaved Surface Sensitivity to Interface Traps

Computer Simulation

May 2004 4th RD-50 Workshop - CERN